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ABSTRACT

Diffusion models (DMs) have recently emerged as SoTA tools for generative mod-
eling in various domains. Standard DMs can be viewed as an instantiation of hi-
erarchical variational autoencoders (VAEs) where the latent variables are inferred
from input-centered Gaussian distributions with fixed scales and variances. Un-
like VAEs, this formulation constrains DMs from changing the latent spaces and
learning abstract representations. In this work, we propose f -DM, a generalized
family of DMs, which allows progressive signal transformation. More precisely,
we extend DMs to incorporate a set of (hand-designed or learned) transformations,
where the transformed input is the mean of each diffusion step. We propose a gen-
eralized formulation of DMs and derive the corresponding de-noising objective to-
gether with a modified sampling algorithm. As a demonstration, we apply f -DM
in image generation tasks with a range of functions, including down-sampling,
blurring, and learned transformations based on the encoder of pretrained VAEs.
In addition, we identify the importance of adjusting the noise levels whenever
the signal is sub-sampled and propose a simple rescaling recipe. f -DM can pro-
duce high-quality samples on standard image generation benchmarks like FFHQ,
AFHQ, LSUN and ImageNet with better efficiency and semantic interpretation.
Please check our videos at http://jiataogu.me/fdm/.

Figure 1: Visualization of reverse diffusion from f -DMs with various signal transformations. xt is
the denoised output, and zs is the input to the next diffusion step. We plot the first three channels of
VQVAE latent variables. Low-resolution images are resized to 2562 for ease of visualization.

1 INTRODUCTION

Diffusion probabilistic models (DMs, Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhari-
wal, 2021) and score-based (Song et al., 2021b) generative models have become increasingly popular
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as the tools for high-quality image (Dhariwal & Nichol, 2021), video (Ho et al., 2022b), text-to-
speech (Popov et al., 2021) and text-to-image (Rombach et al., 2021; Ramesh et al., 2022; Saharia
et al., 2022a) synthesis. Despite the empirical success, conventional DMs are restricted to operate in
the ambient space throughout the Gaussian noising process. On the other hand, common generative
models like VAEs (Kingma & Welling, 2013) and GANs (Goodfellow et al., 2014; Karras et al.,
2021) employ a coarse-to-fine process that hierarchically generates high-resolution outputs.

We are interested in combining the best of the two worlds: the expressivity of DMs and the benefit of
hierarchical features. To this end, we propose f -DM, a generalized multi-stage framework of DMs to
incorporate progressive transformations to the inputs. As an important property of our formulation,
f -DM does not make any assumptions about the type of transformations. This makes it compatible
with many possible designs, ranging from domain-specific ones to generic neural networks. In
this work, we consider representative types of transformations, including down-sampling, blurring,
and neural-based transformations. What these functions share in common is that they allow one to
derive increasingly more global, coarse, and/or compact representations, which we believe can lead
to better sampling quality as well as reduced computation.

Incorporating arbitrary transformations into DMs also brings immediate modeling challenges. For
instance, certain transformations destroy the information drastically, and some might also change
the dimensionality. For the former, we derive an interpolation-based formulation to smoothly bridge
consecutive transformations. For the latter, we verify the importance of rescaling the noise level, and
propose a resolution-agnostic signal-to-noise ratio (SNR) as a practical guideline for noise rescaling.

Extensive experiments are performed on image generation benchmarks, including FFHQ, AFHQ,
LSUN Bed/Church and ImageNet. f -DMs consistently match or outperform the baseline perfor-
mance, while requiring relatively less computing thanks to the progressive transformations. Further-
more, given a pre-trained f -DM, we can readily manipulate the learned latent space, and perform
conditional generation tasks (e.g., super-resolution) without additional training.

2 BACKGROUND

Figure 2: (a) the standard DMs; (b) a bottom-up
hierarchical VAEs; (c) our proposed f -DM.

Diffusion Models (DMs, Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020) are
deep generative models defined by a Markovian
Gaussian process. In this paper, we consider
diffusion in continuous time similar to Song
et al. (2021b); Kingma et al. (2021).

Given a datapoint x ∈ RN , a DM models
time-dependent latent variables z = {zt|t ∈
[0, 1], z0 = x} based on a fixed signal-noise
schedule {αt, σt}:

q(zt|zs) = N (zt;αt|szs, σ
2
t|sI),

where αt|s = αt/αs, σ
2
t|s = σ2

t−α2
t|sσ

2
s , s < t.

It also defines the marginal distribution q(zt|x)
as:

q(zt|x) = N (zt;αtx, σ
2
t I),

By default, we assume the variance preserving
form (Ho et al., 2020). That is, α2

t + σ2
t =

1, α0 = σ1 = 1, and the signal-to-noise-ratio (SNR, α2
t /σ

2
t ) decreases monotonically with t. For

generation, a parametric function θ is optimized to reverse the diffusion process by denoising zt =
αtx + σtϵ to the clean input x, with a weighted reconstruction loss Lθ. For example, the “simple
loss” proposed in Ho et al. (2020) is equivalent to weighting residuals by ωt = α2

t /σ
2
t :

Lθ = Ezt∼q(zt|x),t∼[0,1]

[
ωt · ∥xθ(zt, t)− x∥22

]
. (1)

In practice, θ is parameterized as a U-Net (Ronneberger et al., 2015). As suggested in Ho et al.
(2020), predicting the noise ϵθ empirically achieves better performance than predicting xθ, where
xθ(zt, t) = (zt − σtϵθ(zt, t))/αt. Sampling from such a learned model can be performed from
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ancestral sampling (DDPM, Ho et al., 2020), or a deterministic DDIM sampler (Song et al., 2021a).
Starting from z1 ∼ N (0, I), a sequence of timesteps 1 = t0 > . . . > tN = 0 are sampled for
iterative generation, and we can readily summarize both methods for each step as follows:

zs = αs · xθ(zt) +
√

σ2
s − η2σ̄2 · ϵθ(zt) + ησ̄ · ϵ, ϵ ∼ N (0, I), s < t, (2)

where σ̄ = σsσt|s/σt, and η controls the proportion of additional noise. (i.e., DDIM η = 0).

As the score function ϵθ is defined in the ambient space, it is clear that all the latent variables z are
forced to be the same shape as the input data x (RN ). This not only leads to inefficient training,
especially for steps with high noise level (Jing et al., 2022), but also makes DMs hard to learn
abstract and semantically meaningful latent space as pointed out by Preechakul et al. (2022).

Variational Autoencoders (VAEs, Kingma & Welling, 2013) are a broader class of generative mod-
els with latent variables, and DMs can be seen as a special case with a fixed encoder and “infinite”
depth. Instead, the encoder (qϕ(z|x)) and decoder (pθ(x, z)) of VAEs are optimized jointly for the
variational lower bound similar to DMs. Unlike DMs, there are no restrictions on the dimensions of
the latent space. Therefore, VAEs are widely known as tools for learning semantically meaningful
representations in various domains. Figure 2(a,b) shows a comparison between DMs and “bottom-
up style” hierarchical VAEs. Recently, deep VAEs (Vahdat & Kautz, 2020; Child, 2021) have made
progress on high-quality generation with top-down architectures, however, the visual outputs still
have gaps relative to other generative models such as GANs or DMs. Inspired by hierarchical VAEs,
the goal of this work is to incorporate hierarchical structures into DMs for both high-quality gener-
ation with signal transformation in the synthesis process.

3 METHOD

In this section, we first dive into f -DM, an extended family of DMs to enable diffusion on trans-
formed signals. We start by introducing the definition of the proposed multi-stage formulation
with general signal transformations, followed by modified training and generation algorithms (Sec-
tion 3.1). Then, we specifically apply f -DM with three categories of transformations (Section 3.2).

3.1 MULTI-STAGE DIFFUSION

Signal Transformations We consider a sequence of deterministic functions f = {f0, . . . , fK},
where f0 . . . fk progressively transforms the input signal x ∈ RN into xk = f0:k(x) ∈ RMk .
We assume x0 = f0(x) = x. In principle, f can be any function. In this work, we focus on
transformations that gradually destroy the information contained in x (e.g., down-sampling), leading
towards more compact representations. Without loss of generality, we assume M0 ≥ M1 ≥ . . . ≥
MK . A sequence of inverse mappings g = {g0, . . . , gK−1} is used to connect a corresponding
sequence of pairs of consecutive spaces. Specifically, we define x̂k as:

x̂k :=

{
gk

(
fk+1(x

k)
)
≈ xk, if k < K,

xk, if k = K.
(3)

The approximation of Equation 3 (k < K) is not necessarily (and sometimes impossibly) accurate.
For instance, fk downsamples an input image x from 1282 into 642 with average pooling, and gk
can be a bilinear interpolation that upsamples back to 1282, which is a lossy reconstruction.

The definition of f and g can be seen as a direct analogy of the encoder (ϕ) and decoder (θ) in
hierarchical VAEs (see Figure 2 (b)). However, there are still major differences: (1) the VAE en-
coder/decoder is stochastic, and the encoder’s outputs are regularized by the prior. In contrast, f
and g are deterministic, and the encoder output xK does not necessarily follow a simple prior; (2)
VAEs directly use the decoder for generation, while f , g are fused in the diffusion steps of f -DM.

Forward Diffusion We extend the continuous-time DMs for signal transformations. We split the
diffusion time 0→ 1 into K+1 stages, where for each stage, a partial diffusion process is performed.
More specifically, we define a set of time boundaries 0 = τ0 < τ1 < . . . < τK < τK+1 = 1, and
for t ∈ [0, 1], the latent zt has the following marginal probability:

q(zt|x) = N (zt;αtxt, σ
2
t I), where xt =

(t− τk)x̂
k + (τk+1 − t)xk

τk+1 − τk
, τk ≤ t < τk+1. (4)
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Figure 3: Left: an illustration of the proposed SNR computation for different sampling rates; Right:
the comparison of rescaling the noise level for progressive down-sampling. Without noise rescaling,
the diffused images in low-resolution quickly become too noisy to distinguish the underline signal.

As listed above, xt is the interpolation of xk and its approximation x̂k when t falls in stage k.
We argue that interpolation is crucial as it creates a continuous transformation that slowly corrupts
information inside each stage. In this way, such change can be easily reversed by our model. Also,
it is non-trivial to find the optimal stage schedule τk for each model as it highly depends on how
much the information is destroyed in each stage fk. In this work, we tested two heuristics: (1) linear
schedule τk = k/(K + 1); (2) cosine schedule τk = cos(1 − k/(K + 1)). Note that the standard
DMs can be seen as a special case of our f -DM when there is only one stage (K = 0).

Equation 4 does not guarantee a Markovian transition. Nevertheless, our formulation only need
q(zt|zs,x), which has the following simple form focusing on diffusion steps within a stage:

q(zt|zs,x) = N (zt;αt|szs + αt · (xt − xs) , σ
2
t|sI), τk ≤ s < t < τk+1. (5)

From Equation 5, we further re-write xt − xs = −δt · (t− s)/(t− τk), where δt = xk − xt is the
signal degradation. Equation 5 also indicates that the reverse diffusion distribution q(zs|zt,x) ∝
q(zt|zs,x)q(zs|x) can be written as the function of xt and δt which will be our learning objectives.

Boundary Condition To enable diffusion across stages, we need the transition at stage boundaries
τk. More specifically, when the step approaches the boundary τ− (the left limit of τ ), the transi-
tion q(zτ |zτ− ,x) should be as deterministic (ideally invertible) & smooth as possible to minimize
information loss.1. First, we can easily expand zτ and zτ− as the signal and noise combination:

Before: zτ− = ατ− · xτ− + στ− · ϵ, p(ϵ) = N (0, I),

After: zτ = ατ · xτ + στ · ζ(ϵ), p(ζ(ϵ)) = N (0, I).
(6)

Based on definition, xτ− = x̂k−1 = g(xk) = g(xτ ), which means the signal part is invertible.
Therefore we only need to find ζ. Under the initial assumption of Mk ≤Mk−1, this can be achieved
easily by dropping elements from ϵ. Take down-sampling (Mk−1 = 4Mk) as an example. We can
directly drop 3 out of every 2× 2 values from ϵ. More details are included in Appendix A.4.

The second requirement of a smooth transition is not as straightforward as it looks, which asks
the “noisiness” of latents z to remain unchanged across the boundary. We argue that the conven-
tional measure – the signal-to-noise-ratio (SNR) – in DM literature is not compatible with resolution
change as it averages the signal/noise power element-wise. In this work, we propose a generalized
resolution-agnostic SNR by viewing data as points sampled from a continuous field:

SNR(z) =
EΩ∼I∥Ei∼ΩSIGNAL(z)∥2

EΩ∼I∥Ei∼ΩNOISE(z)∥2
, (7)

where I is the data range, and Ω is the minimal interested patch relative to I , which is invariant
to different sampling rates (resolutions). As shown in Figure 3 (left), we can obtain a reliable
measure of noisiness by averaging the signal/noise inside patches. We derive ατ , στ from ατ− , στ−

1For simplicity, we omit the subscript k for τk in the following paragraphs.
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Figure 4: An illustration of the training pipeline.

for any transformations by forcing SNR(zτ ) = SNR(zτ−) under this new definition. Specifically, if
dimensionality change is solely caused by the change of sampling rate (e.g., down-sampling, average
RGB channels, deconvolution), we can get the following relation:

α2
τ

/
σ2
τ = dk · γk · α2

τ−

/
σ2
τ− , (8)

where dk = Mk−1/Mk is the total dimension change, and γk = E||x̂k−1||2/E||xk||2 is the change
of signal power. For example, we have dk = 4, γk ≈ 1 for down-sampling. Following Equation 8,
the straightforward rule is to rescale the magnitude of the noise, and keep the signal part unchanged:
α ← α, σ ← σ/

√
dk, which we refer as signal preserved (SP) rescaling. Note that, to ensure the

noise schedule is continuous over time and close to the original schedule, such rescaling is applied
to the noises of the entire stage, and will be accumulated when multiple transformations are used.
As the comparison shown in Figure 3, the resulting images are visually closer to the standard DM.
However, the variance of zt becomes very small, especially when t → 1, which might be hard for
the neural networks to distinguish. Therefore, we propose the variance preserved (VP) alternative to
further normalize the rescaled α, σ so that α2 + σ2 = 1. We show the visualization in Figure 3 (b).

Training We train a neural network θ to denoise. An illustration of the training pipeline is shown
in Figure 4. In f -DM, noise is caused by two factors: (1) the perturbation ϵ from noise injection;
(2) the degradation δ due to signal transformation. Thus, we propose to predict xθ and δθ jointly,
which simultaneously remove both noises from zt with a “double reconstruction” loss:

Lθ = Ezt∼q(zt|x),t∼[0,1]

[
ωt ·

(
∥xθ(zt, t)− xt∥22 + ∥δθ(zt, t)− δt∥22

)]
, (9)

where the denoised output is xθ(zt, t) + δθ(zt, t). Unlike standard DMs, the denoising goals are
the transformed signals of each stage rather than the final real images, which are generally simpler
targets to recover. The same as standard DMs, we also choose to predict ϵθ, and compute xθ =
(zt−σtϵθ)/αt. We adopt the same U-Net architecture for all stages, where input zt will be directed
to the corresponding inner layer based on spatial resolutions (see Appendix Figure 11 for details).

Unconditional Generation We present the generation steps in Algorithm 1, where xt and δt are
replaced by model’s predictions xθ, δθ. Thanks to the interpolation formulation (Equation 4), gen-
eration is independent of the transformations f . Only the inverse mappings g – which might be
simple and easy to compute – is needed to map the signals at boundaries. This brings flexibility
and efficiency to learning complex or even test-time inaccessible transformations. In addition, Al-
gorithm 1 includes a “noise-resampling step” for each stage boundary, which is the reverse process
for ζ(ϵ) in Equation 6. While ζ is deterministic, the reverse process needs additional randomness.
For instance, if ζ drops elements in the forward process, then the reverse step should inject standard
Gaussian noise back to the dropped locations. Because we assume M0 ≥ . . . ≥MK , we propose to
sample a full-size noise ϵfull before generation, and gradually adding subsets of ϵfull to each stage.
Thus, ϵfull encodes multi-scale information similar to RealNVP (Dinh et al., 2016).

Conditional Generation Given an unconditional f -DM, we can do conditional generation by
replacing the denoised output xθ with any condition xc at a suitable time (T ), and starting diffusion
from T . For example, suppose f is downsample, and xc is a low-resolution image, f -DM enables
super-resolution (SR) without additional training. To achieve that, it is critical to initialize zT , which
implicitly asks zT ≈ αTxc + σT ϵθ(zT ). In practice, we choose T to be the corresponding stage
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Algorithm 1: Reverse diffusion for image generation using f -DM
Input: model θ, f , g, stage schedule {τ0, . . . , τK}, rescaled noise schedule functions α(.), σ(.),

step-size ∆t, ϵfull ∼ N (0, I), DDPM ratio η
1 Initialize z from ϵfull
2 for (k = K; k ≥ 0; k = k − 1) do
3 for (t = τk+1; t > τk; t = t−∆t, s = t−∆t) do
4 ϵθ, δθ = θ(z, t); xθ = (z − σ(t) · ϵθ)/α(t);
5 if s > τk then
6 z = α(s) · (xθ + δθ · (t− s)/(t− τk)) +

√
σ2(s)− η2σ̄2 · ϵθ + ησ̄ · ϵ, ϵ ∼ N (0, I)

7 if k > 0 then
8 Re-sample noise ϵrs from ϵθ and ϵfull; z = α(τk) · gk(xθ) + σ(τk) · ϵrs

9 return xθ

boundary, and initialize z by adding random noise σT ϵ to αTxc. A gradient-based method is used
to iteratively update zT ← zT − λ∇zT

∥xθ(zT )− xc∥22 for a few steps before the diffusion starts.

3.2 APPLICATIONS ON VARIOUS TRANSFORMATIONS

With the definition in Section 3.1, next we show f -DM applied with different transformations. In
this paper, we consider the following three categories of transformations:

• Downsampling As the motivating example in Section 3.1, we let f a sequence of downsampe
operations that transforms a given image (e.g., 2562) progressively down to 162, where each fk(.)
reduces the length by 2, and correspondingly gk(.) upsamples by 2. Thus, the generation starts
from a low-resolution noise and progressively performs super-resolution. We denote the model as
f -DM-DS, where dk = 4, γk = 1 in Equation 8 and K = 4 for 2562 images.

• Blurring f -DM also supports general blur transformations. Unlike recent works (Rissanen
et al., 2022; Hoogeboom & Salimans, 2022) that focuses on continuous-time blur (heat dissipa-
tion), Equation 4 can be seen as an instantiation of progressive blur function if we treat x̂k as
a blurred version of xk. This design brings more flexibility in choosing any kind of blurring
functions, and using the blurred versions as stages. In this paper, we experiment with two types
of blurring functions. (1) f -DM-Blur-U: utilizing the same downsample operators as f -DM-DS,
while always up-sampling the images back to the original sizes; (2) f -DM-Blur-G: applying stan-
dard Gaussian blurring kernels following Rissanen et al. (2022). In both cases, we use gk(x) = x.
As the dimension is not changed, no rescaling and noise resampling is required.

• Image→ Latent Trans. We further consider diffusion with learned non-linear transformations
such as VAEs (see Figure 2 (b), f : VAE encoder, g: VAE decoder). By inverting such an encoding
process, we are able to generate data from low-dimensional latent space similar to Rombach et al.
(LDM, 2021). As a major difference, LDM operates only on the latent variables, while f -DM
learns diffusion in the latent and image spaces jointly. Because of this, our performance will not
be bounded by the quality of the VAE decoder. In this paper, we consider VQVAE (Van Den Oord
et al., 2017) together with its GAN variant (VQGAN, Esser et al., 2021). For both cases, we
transform 2562×3 images into 322×4 (i.e., dk = 48) latent space. The VQVAE encoder/decoder
is trained on ImageNet (Deng et al., 2009), and is frozen for the rest of the experiments. For
f -DM-VQGAN, we directly take the checkpoint provided by Rombach et al. (2021). Besides, we
need to tune γk separately for each encoder due to the change in signal magnitude.

Generated examples with the above transformations are shown in Figure 1. We use cosine stage
schedule for all DS- and Blur-based models, and linear schedule for VQVAE/VQGAN models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate f -DMs on five commonly used benchmarks testing generation on a range
of domains: FFHQ (Karras et al., 2019), AFHQ (Choi et al., 2020), LSUN Church & Bed (Yu et al.,
2015), and ImageNet (Deng et al., 2009). All images are center-cropped and resized to 256× 256.

6



Preprint. In progress

Figure 5: ↑ Random samples from f -DM-DS trained on various datasets; ↓ Comparison of f -DMs
and the corresponding baselines under various transformations. Best viewed when zoomed in. All
faces presented are synthesized by the models, and are not real identities.

Training Details We implement the three types of transformations with the same architecture and
hyper-parameters except for the stage-specific adapters. We adopt a lighter version of ADM (Dhari-
wal & Nichol, 2021) as the main U-Net architecture. For all experiments, we adopt the same training
scheme using AdamW (Kingma & Ba, 2014) optimizer with a learning rate of 2e−5 and an EMA de-
cay factor of 0.9999. We set the weight ωt = sigmoid(− log(α2

t /σ
2
t )) following P2-weighting (Choi

et al., 2022). The cosine noise schedule αt = cos(0.5πt) is adopted for diffusion working in the
2562 × 3 image space. As proposed in Equation 8, noise rescaling (VP by default) is applied for
f -DMs when the resolutions change. All our models are trained with batch-size 32 images for 500K
(FFHQ, AFHQ, LSUN Church), 1.2M (LSUN Bed) and 2.5M (ImageNet) iterations, respectively.

Baselines & Evaluation We compare f -DMs against a standard DM (DDPM, Ho et al., 2020)
on all five datasets. To ensure a fair comparison, we train DDPM following the same settings and
continuous-time formulation as our approaches. We also include transformation-specific baselines:
(1) we re-implement the cascaded DM (Cascaded, Ho et al., 2022a) to adapt f -DM-DS setup from
162 progressively to 2562, where for each stage a separate DM is trained conditioned on the con-
secutive downsampled image; (2) we re-train a latent-diffusion model (LDM, Rombach et al., 2021)
on the extracted latents from our pretrained VQVAE; (3) to compare with f -DM-Blur-G, we in-
clude the scores and synthesised examples of IHDM (Rissanen et al., 2022). We set 250 timesteps
(∆t = 0.004) for f -DMs and the baselines with η = 1 (Algorithm 1). We use Frechet Inception
Distance (FID, Heusel et al., 2017) and Precision/Recall (PR, Kynkäänniemi et al., 2019) as the
measures of visual quality, based on 50K samples and the entire training set.

4.2 RESULTS

Qualitative Comparison To demonstrate the capability of handling various complex datasets,
Figure 5 (↑) presents an uncurated set of images generated by f -DM-DS. We show more samples
from all types of f -DMs in the Appendix E.3. We also show a comparison between f -DMs and the
baselines with various transformations on FFHQ (Figure 5 ↓). Our methods consistently produce
better visual results with more coherence and without noticeable artifacts.
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Table 1: Quantitative comparisons on various datasets. The speed compared to DDPM is calculated
with bsz= 1 on CPU. Best performing DMs are shown in bold.

Models FID↓ P↑ R↑ FID↓ P↑ R↑ Speed
FFHQ 256× 256 AFHQ 256× 256

DDPM 10.8 0.76 0.53 9.3 0.74 0.51 ×1.0
DDPM (1/2) 16.8 0.74 0.45 15.2 0.64 0.44 ×2.0

Cascaded 49.0 0.40 0.09 24.2 0.37 0.13 −
f -DM-DS 10.8 0.74 0.50 6.4 0.81 0.48 ×2.1

IHDM 64.9 − − 43.4 − − −
f -DM-Blur-G 11.7 0.73 0.51 6.9 0.76 0.49 ×1.0
f -DM-Blur-U 10.4 0.74 0.52 7.0 0.77 0.53 ×1.0

LDM 48.0 0.31 0.07 29.7 0.07 0.11 ×9.8
LDM (GAN)∗ 8.6 0.72 0.60 6.5 0.63 0.61 ×9.2
f -DM-VQVAE 12.7 0.77 0.47 8.9 0.76 0.40 ×1.7
f -DM-VQGAN 11.7 0.74 0.51 5.6 0.76 0.53 ×1.7

Models FID↓
LSUN-Church 256× 256

DDPM 9.7
f -DM-DS 8.2
f -DM-VQVAE 8.0

LSUN-Bed 256× 256
DDPM 8.0
f -DM-DS 6.9
f -DM-VQVAE 7.1

ImageNet 256× 256
DDPM 10.9
f -DM-DS 8.2
f -DM-VQVAE 6.8

Figure 6: Random DDIM samples (η = 0) from (a) f -DMs on AFHQ and LSUN-Church by given
{downsampled, blurred, latent} images as conditions; (b)f -DM-VQVAE by interpolating the initial
noise of the latent stage; (c)f -DM-DS starting from the same initial noise of the 16× 16 stage. For
(c), we also show the “mean image” of 300 random samples using the same initial noise.

Quantitative Comparison We measure the generation quality (FID and precision/recall) and rel-
ative inference speed of f -DMs and the baselines in Table 1. Across all five datasets, f -DMs con-
sistently achieves similar or even better results for the DDPM baselines, while gaining near ×2
inference speed for f -DM-{DS, VQVAE, VQGAN} due to the nature of transformations. As a
comparison, having fewer timesteps (DDPM 1/2) greatly hurts the generation quality of DDPM. We
also show comparisons with transformation-specific baselines on FFHQ & AFHQ.

v.s. Cascaded DMs Although cascaded DMs have been shown effective in literature (Nichol &
Dhariwal, 2021; Ho et al., 2022a), it is underexplored to apply cascades in a sequence of consecutive
resolutions (16 → 32 → 64 → . . .) like ours. In such cases, the prediction errors get easily
accumulated during the generation, yielding serious artifacts in the final resolution. To ease this, Ho
et al. (2022a) proposed to apply “noise conditioning augmentation” which reduced the domain gap
between stages by adding random noise to the input condition. However, it is not straightforward
to tune the noise level for both training and inference time. By contrast, f -DM is by-design non-
cascaded, and there are no domain gaps between stages. That is, we can train our model end-to-end
without worrying the additional tuning parameters and achieve stable results.

v.s. LDMs We show comparisons with LDMs (Rombach et al., 2021) in Table 1. LDMs generate
more efficiently as the diffusion only happens in the latent space. However, the generation is heavily
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Table 2: Ablation of design choices for f -DMs trained on FFHQ. All faces are not real identities.

Model Eq. 4 Rescale Stages FID↓ P↑ R↑

f -DM-
DS

No VP cosine 26.5 0.70 0.25
Yes No cosine 14.5 0.73 0.43
Yes SP cosine 12.1 0.75 0.47
Yes VP linear 13.5 0.73 0.46
Yes VP cosine 10.8 0.74 0.50

f -DM-
VQVAE

Yes No linear 24.0 0.79 0.29
Yes VP cosine 13.8 0.78 0.45
Yes VP linear 12.7 0.77 0.47

biased by the behavior of the fixed decoder. For instance, it is challenging for VQVAE decoders
to synthesize sharp images, which causes low scores in Table 1. However, LDM with VQGAN
decoders is able to generate sharp details, which are typically favored by InceptionV3 (Szegedy
et al., 2016) used in FID and PR. Therefore, despite having artifacts (see Figure 5, below, right-
most) in the output, LDMs (GAN) still obtain good scores. In contrast, f -DM, as a pure DM,
naturally bridges the latent and image spaces, where the generation is not restricted by the decoder.

v.s. Blurring DMs Table 1 compares with a recently proposed blurring-based method (IHDM,
Rissanen et al., 2022). Different from our approach, IHDM formulates a fully deterministic forward
process. We conjecture the lack of randomness is the cause of their poor generation quality. In-
stead, f -DM proposes a natural way of incorporating blurring with stochastic noise, yielding better
quantitative and qualitative results.

Conditional Generation In Figure 6(a), we demonstrate the example of using pre-trained f -DMs
to perform conditional generation based on learned transformations. We downsample and blur the
sampled real images, and start the reverse diffusion following Section 3.1 with f -DM-DS and -
Blur-U, respectively. Despite the difference in fine details, both our models faithfully generate
high-fidelity outputs close to the real images. The same algorithm is applied to the extracted latent
representations. Compared with the original VQVAE output, f -DM-VQVAE is able to obtain bet-
ter reconstruction. We provide additional conditional generation samples with the ablation of the
“gradient-based” initialization method in Appendix E.2.

Latent Space Manipulation To demonstrate f -DMs have learned certain abstract representations
by modeling with signal transformation, we show results of latent manipulation in Figure 6. Here
we assume DDIM sampling (η = 0), and the only stochasticity comes from the initially sampled
noise ϵfull. In (b), we obtain a semantically smooth transition between two cat faces when linearly
interpolating the low-resolution noises; on the other hand, we show samples of the same identity with
different fine details (e.g., expression, poses) in (c), which is achieved easily by sampling f -DM-DS
with the low-resolution (162) noise fixed. This implies that f -DM is able to allocate high-level and
fine-grained information in different stages via learning with downsampling.

4.3 ABLATION STUDIES

Table 2 presents the ablation of the key design choices. As expected, the interpolation formulation
(Equation 4) effectively bridges the information gap between stages, without which the prediction
errors get accumulated, resulting in blurry outputs and bad scores. Table 2 also demonstrates the
importance of applying correct scaling. For both models, rescaling improves the FID and recall
by large margins, where SP works slightly worse than VP. In addition, we also empirically explore
the difference of stage schedules. Compared to VAE-based models, we usually have more stages
in DS/Blur-based models to generate high-resolution images. The cosine schedule helps diffusion
move faster in regions with low information density (e.g., low-resolution, heavily blurred).

5 RELATED WORK

Progressive Generation with DMs Conventional DMs generate images in the same resolutions.
Therefore, existing work generally adopt cascaded approaches (Nichol & Dhariwal, 2021; Ho et al.,
2022a; Saharia et al., 2022a) that chains a series of conditional DMs to generate coarse-to-fine,
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and have been used in super-resolution (SR3, Saharia et al., 2022b). However, cascaded models
tend to suffer error propagation problems. More recently, Ryu & Ye (2022) dropped the need of
conditioning, and proposed to generate images in a pyramidal fashion with additional reconstruction
guidance; Jing et al. (2022) explored learning subspace DMs and connecting the full space with
Langevin dynamics. By contrast, the proposed f -DM is distinct from all the above types, which only
requires one diffusion process, and the images get naturally up-sampled through reverse diffusion.

Blurring DMs Several concurrent research (Rissanen et al., 2022; Daras et al., 2022; Lee et al.,
2022) have recently looked into DM alternatives to combine blurring into diffusion process, some of
which also showed the possibility of deterministic generation (Bansal et al., 2022). Although sharing
similarities, our work starts from a different view based on signal transformation. Furthermore, our
empirical results also show that stochasticity plays a critical role in high-quality generation.

Latent Space DMs Existing work also investigated combining DMs with standard latent variable
models. To our best knowledge, most of these works adopt DMs for learning the prior of latent space,
where sampling is followed by a pre-trained (Rombach et al., 2021) or jointly optimized (Vahdat
et al., 2021) decoder. Conversely, f -DM does not rely on the quality decoder.

6 LIMITATIONS AND FUTURE WORK

Although f -DM enables diffusion with signal transformations, which greatly extends the scope of
DMs to work in transformed space, there still exist limitations and opportunities for future work.
First, it is an empirical question to find the optimal stage schedule for all transformations. Our
ablation studies also show that different heuristics have differences for DS-based and VAE-based
models. A metric that can automatically determine the best stage schedule based on the property of
each transformation is needed and will be explored in the future. In addition, although the current
method achieves faster inference when generating with transformations like down-sampling, the
speed-up is not very significant as we still take the standard DDPM steps. How to further accelerate
the inference process of DMs is a challenging and orthogonal direction. For example, it has great
potential to combine f -DM with speed-up techniques such as knowledge distillation (Salimans &
Ho, 2022). Moreover, no matter hand-designed or learned, all the transformations used in f -DM are
still fixed when training DM. It is, however, different from typical VAEs, where both the encoder
and decoder are jointly optimized during training. Therefore, starting from a random/imperfect
transformation and training f -DM jointly with the transformations towards certain target objectives
will be studied as future work.

7 CONCLUSION

We proposed f -DM, a generalized family of diffusion models that enables generation with signal
transformations. As a demonstration, we apply f -DM to image generation tasks with a range of
transformations, including downsampling, blurring and VAEs, where f -DMs outperform the base-
lines in terms of synthesis quality and semantic interpretation.

ETHICS STATEMENT

Our work focuses on technical development, i,e., synthesizing high-quality images with a range of
signal transformations (e.g., downsampling, blurring). Our approach has various applications, such
as movie post-production, gaming, helping artists reduce workload, and generating synthetic data as
training data for other computer vision tasks. Our approach can be used to synthesize human-related
images (e.g., faces), and it is not biased towards any specific gender, race, region, or social class.

However, the ability of generative models, including our approach, to generate high-quality images
that are indistinguishable from real images, raises concerns about the misuse of these methods,
e.g., generating fake images. To resolve these concerns, we need to mark all the generated results
as “synthetic”. In addition, we believe it is crucial to have authenticity assessment, such as fake
image detection and identity verification, which will alleviate the potential for misuse. We hope our
approach can be used to foster the development of technologies for authenticity assessment. Finally,
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we believe that creating a set of appropriate regulations and laws would significantly reduce the risks
of misuse while bolstering positive effects on technology development.

REPRODUCIBILITY STATEMENT

We assure that all the results shown in the paper and supplemental materials can be reproduced. We
believe we have provided enough implementation details in the paper and supplemental materials
for the readers to reproduce the results. Furthermore, we will open-source our code together with
pre-trained checkpoints upon the acceptance of the paper.
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APPENDIX

A DETAILED DERIVATION OF f -DMS

A.1 q(zt|zs,x)

We derive the definition in Equation 5 with the change-of-variable trick given the fact that xt,xs

and xk are all deterministic functions of x.

More precisely, suppose zt ∼ N (αtxt, σ
2
t I), zs ∼ N (αsxs, σ

2
sI), where τk ≤ s < t < τk+1.

Thus, it is equivalent to have ut ∼ N (αtx
k, σ2

t I), us ∼ N (αsx
k, σ2

sI), ut = zt − αt(xt −
xk),us = zs − αs(xs − xk). From the above definition, it is reasonable to assume ut,us follow
the standard DM transitionm which means that:

ut = αt|sus + σt|sϵ, ϵ ∼ N (0, I)

⇒ zt − αt(xt − xk) = αt|s
(
zs − αs(xs − xk)

)
+ σt|sϵ, ϵ ∼ N (0, I)

⇒ zt = αt|szs + αt(xt − xs) + σt|sϵ, ϵ ∼ N (0, I)

As typically xt ̸= xs and both xt,xs are the functions of xk. Then zt is dependent on both zs and
xk = f0:k(x), resulting in a non-Markovian transition:

q(zt|zs,x) = N (zt;αt|szs + αt · (xt − xs) , σ
2
t|sI),

Note that, this equation stands only when xt,xs and xk in the same space, and we did not make
specific assumptions to the form of xt.

A.2 q(zs|zt,x)

The reverse diffusion distribution follows the Bayes’ Theorem: q(zs|zt,x) ∝ q(zs|x)q(zt|zs,x),
where both q(zs|x) and q(zt|zs,x) are Gaussian distributions with general forms ofN (zs|µ, σ2I)
andN (zt|Azs+b, σ′2I), respectively. Based on Bishop & Nasrabadi (2006) (2.116), we can derive:

q(zs|zt,x) = N (zs|σ̄−2
(
σ′−2A⊤(zt − b) + σ−2µ

)
, σ̄2I),

where σ̄2 = (σ−2 + σ′−2∥A∥2)−1. Therefore, we can get the exact form by plugging our variables
µ = αsx̂

s
k, σ = σs, A = αt|sI , b = αt · (xt − xs), σ′ = σt|s into above equation, we get:

q(zs|zt,x) = N (zs|αsxs +
√

σ2
s − σ̄2ϵt, σ̄

2I),

where ϵt = (zt − αtxt)/σt and σ̄ = σsσt|s/σt.

Alternatively, if we assume xt take the interpolation formulation in Equation 4, we can also re-write
xs with xt +

t−s
t−τk

δt, where we define a new variable δt = xk − xt. As stated in the main context
(Section 3.1), such change makes q(zt|zs,x) avoid computing xs which may be potentially costly.
In this way, we re-write the above equation as follows:

q(zs|zt,x) = N (zs|, αs(xt + δt · (t− s)/(t− τk)) +
√
σ2
s − σ̄2ϵt, σ̄

2I), (10)

A.3 DIFFUSION INSIDE STAGES

In the inference time, we generate data by iteratively sampling from the conditional distribution
p(zs|zt) = Ex [q(zs|zt,x)] based on Equation 10. In practice, the expectation over x is approx-
imated by our model’s prediction. As shown in Equation 9, in this work, we propose a “double-
prediction” network θ that reads zt, and simultaneously predicts xt and δt with xθ and δθ, respec-
tively. The predicted Gaussian noise is denoted as ϵθ = (zt−αtxθ)/σt. Note that the prediction xθ

and ϵθ are interchangable, which means that we can readily derive one from the other’s prediction.
Therefore, by replacing xt, δt, ϵt, with xθ, δθ, ϵθ in Equation 10, we obtain the sampling algorithm
shown in Algorithm 1: Line 6.
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Figure 8: Illustration of noise schedule (αt and σt) for f -DM-DS models with 5 stages (162 →
2562). We use the standard cosine noise schedule αt = cos(0.5πt). We also show the difference
between the linear/cosine stage schedule, as well as the proposed SP/VP re-scaling methods.

A.4 NOISE AT BOUNDARIES

In this paper, the overall principle is to handle the transition across stage boundary is to ensure the
forward diffusion to be deterministic and smooth, therefore almost no information is lost during the
stage change. Such requirement is important as it directly correlated to the denoising performance.
Failing to recover the lost information will directly affect the diversity of the model generates.

Figure 7: Two naı̈ve ways for down-sampling.

Forward diffusion As described in Sec-
tion 3.1, since we have the control of the signal
and the noise separately, we can directly apply
the deterministic transformation on the signal,
and dropping noise elements.

Alternatively, we also implemented a different
ζ(ϵ) based on averaging. As shown in Figure 7,
if the transformation is down-sampling, we can use the fact that the mean of Gaussian noises is still
Gaussian with lower variance: (ϵ0 + ϵ1 + ϵ2 + ϵ3)/4 ∼ N (0, 1

4I). Therefore, ×2 rescaling is
needed on the resulted noise.

Reverse diffusion Similarly, we can also define the reverse process if ζ is chosen to be averaging.
Different from “dropping” where the reverse process is simply adding independent Gaussian noises,
the reverse of “averaging” requests to sample

∑3
i=0 ϵi = 2ϵ given the input noise ϵ, while having

p(ϵi) = N (0, I), i = 0, 1, 2, 3. Such problem has a closed solution and can be implemented in an
autoregressive fashion:

a = 2ϵ;

ϵ0 = a/4 +
√
3/4 · ϵ̂1, a = a− ϵ0, ϵ̂1 ∼ N (0, I);

ϵ1 = a/3 +
√

2/3 · ϵ̂2, a = a− ϵ1, ϵ̂2 ∼ N (0, I);

ϵ2 = a/2 +
√

1/2 · ϵ̂3, a = a− ϵ2, ϵ̂3 ∼ N (0, I);

ϵ3 = a

Similar to the case of “dropping”, we also need 3 additional samples ϵ̂1:3 to contribute to four noises,
therefore it can be implemented in the same way as described in Section 3.1. Empirically, reversing
the “averaging” steps tends to produce samples with better FID scores. However, since it introduces
correlations into the added noise, which may cause undesired biases especially in DDIM sampling.

Intuition behind Re-scaling Here we present a simple justification of applying noise rescaling.
Suppose the signal dimensionality changes from Mk−1 to Mk when crossing the stage boundary,
and such change is caused by different sampling rates. Based the proposed resolution-agnostic SNR
(Equation 7), the number of sampled points inside Ω is proportional to its dimensionality. Generally,
it is safe to assume signals are mostly low-frequency. Therefore, averaging signals will not change its
variance. By contrast, as shown above, averaging Gaussian noises results in lower variance, where
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Figure 9: We show the comparison of the DDIM sampling.

in our case, the variance is proportional to M−1. Therefore, suppose the signal magnitude does not
change, we can get the re-scaling low by forcing SNR(zτ ) = SNR(zτ−) at the stage boundary:

σ2
τ− ·M−1

k−1 = σ2
τ ·M−1

k ,

which derives the signal preserving (SP) rescaling in Equation 8. In Figure 8, we show an example
of the change of α and σ with and without applying the re-scaling techqnique for f -DM-DS models.

A.5 DDIM SAMPLING

The above derivations only describe the standard ancestral sampling (η = 1) where q(zs|zt,x) is
determined by Bayes’ Theorem. Optionally, one can arbitrarily define any proper reverse diffusion
distribution as long as the marginal distributions match the definition. For example, f -DM can also
perform deterministic DDIM (Song et al., 2021a) by setting η = 0 in Algorithm 1. Similar to Song
et al. (2021a), we can also obtain the proof based on the induction argument.

Figure 9 shows the comparison of DDIM sampling between the standard DMs and the proposed
f -DM. In DDIM sampling (η = 0), the only randomness comes from the initial noise at t = 1. Due
to the proposed noise resampling technique, f -DM enables a multi-scale noising process where the
sampled noises are splitted and sent to different steps of the diffusion process. In this case, compared
to standard DMs, we gain the ability of controlling image generation at different levels, resulting in
smooth semantic interpretation.

B DETAILED INFORMATION OF TRANSFORMATIONS

We show the difference of all the transformations used in this paper in Figure 10.

B.1 DOWNSAMPLING

In early development of this work, we explored various combinations of performing down-sampling:
f = {bilinear, nearest,Gaussian blur + subsample}, g = {bilinear, bicubic, nearest, neural-based}.
While all these combinations produced similar results, we empirically on FFHQ found that both
choosing bilinear interpolation for both f , g achieves most stable results. Therefore, all the main
experiments of f -DM-DS are conducted on bilinear interpolation. As discussed in Section 3.2, we
choose K = 4, which progressively downsample a 2562 into 162.

B.2 BLURRING

We experimented two types of blurring functions. For upsampling-based blurring, we use the same
number of stages as the downsampling case; for Gaussian-based blurring, we adopt K = 7 with
corresponding kernel sizes σB = 15 sin2(π2 τk), where τk follows the cosine stage schedule. In
practice, we implement blurring function in frequency domain following Rissanen et al. (2022)
based on discrete cosine transform (DCT).
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Figure 10: We show examples of the five transformations (downsample, blur, VAEs) used in this
paper. For downsampling, we resize the image with nearest upsampler; for VQ-VAE/VQ-GAN, we
visualize the first 3 channels of the latent feature maps.

B.3 VAES

In this paper, we only consider vector quantized (VQ) models with single layer latent space, while
our methods can be readily applied to hierarchical (Razavi et al., 2019) and KL-regularized VAE
models (Vahdat & Kautz, 2020). Following Rombach et al. (2021), we take the feature vectors
before the quantization layers as the latent space, and keep the quantization step in the decoder (g)
when training diffusion models.

We follow an open-sourced implementation 2 to train our VQVAE model on ImageNet. The model
consists of two strided convolution blocks which by default downsamples the input image by a factor
of 8. We use the default hyper-parameters and train the model for 50 epochs with a batch-size of
128. For a fair comparison to match the latent size of VQVAE, we use the pre-trained autoencoding
model (Rombach et al., 2021) with the setting of {f=8, VQ (Z=256, d=4)}. We directly use the
checkpoint 3 provided by the authors. Note that the above setting is not the best performing model
(LDM-4) in the original paper. Therefore, it generates more artifacts when reconstructing images
from the latents.

Before training, we compute the signal magnitude ratio γk (Equation 8) over the entire training set of
FFHQ, where we empirically set γk = 2.77 for VQ-GAN and γk = 2.0 for VQ-VAE, respectively.

C DATASET DETAILS

FFHQ (https://github.com/NVlabs/ffhq-dataset) contains 70k images of real
human faces in resolution of 10242. For most of our experiments, we resize the images to 2562.
In addition, we also test our f -DM-DS model on the original 10242 resolutions where the generated
results are shown in Figure 21.

AFHQ (https://github.com/clovaai/stargan-v2#
animal-faces-hq-dataset-afhq) contains 15k images of animal faces including
cat, dog and wild three categories in resolution of 5122. We train conditional diffusion models by
merging all training images with the label information. All images are resized to 2562.

LSUN (https://www.yf.io/p/lsun) is a collection of large-scale image dataset contain-
ing 10 scenes and 20 object categories. Following previous works Rombach et al. (2021), we choose
the two categories – Church (126k images) and Bed (3M images), and train separate unconditional

2https://github.com/rosinality/vq-vae-2-pytorch
3https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
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models on them. As LSUN-Bed is relatively larger, we set the iterations longer than other datasets.
All images are resized to 2562 with center-crop.

ImageNet (https://image-net.org/download.php) we use the standard ImageNet-
1K dataset which contains 1.28M images across 1000 classes. We directly merge all the training
images with class-labels. All images are resized to 2562 with center-crop. For both f -DM and the
baseline models, we adopt the classifier-free guidance (Ho & Salimans, 2022) with the unconditional
probability 0.2. In the inference time, we use the guidance scale (s = 2) for computating FIDs, and
s = 3 to synthesize examples for comparison.

D IMPLEMENTATION DETAILS

D.1 ARCHITECTURE CONFIGURATIONS

We implement f -DM strictly following standard U-Net architecture in Nichol & Dhariwal (2021).
As shown in Figure 11, input zt will be directed to the corresponding inner layer based on spa-
tial resolutions, and a stage-specific adapter is adopted to transform the channel dimension. Such
architecture also allows memory-efficient batching across stages where we can create a batch with
various resolutions, and split the computation based on the resolutions.

D.2 HYPER-PARAMETERS

In our experiments, we adopt the following two sets of parameters based on the complexity of the
dataset: base (FFHQ, AFHQ, LSUN-Church/Bed) and big (ImageNet). For base, we use 1 residual
block per resolution, with the basic dimension 128. For big, we use 2 residual blocks with the
basic dimension 192. Given one dataset, all the models with various transformations including the
baseline DMs share the same hyper-parameters except for the adapters. We list the hyperparameter
details in Table 3.

Hyper-param. FFHQ* FFHQ AFHQ LSUN-Church LSUN-Bed ImageNet

image res. 10242 2562 2562 2562 2562 2562

# of classes None None 3 None None 1000
c.f. guidance - - No - - Yes

#channels 128 128 128 128 128 192
#res-blocks 1 1 1 1 1 2
channel multi. [ 1

4
, 1
2
, 1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4]

attention res. 16, 8

batch size 32 32 32 32 32 64
lr 2e−5
iterations 500K 500K 500K 500K 1200K 2500K

Table 3: Hyperparameters and settings for f -DM on different datasets. *We also include experi-
ments of training models on 10242 resolutions.

E ADDITIONAL RESULTS

E.1 V.S. TRANSFORMATION-SPECIFIC BASELINES

We include more comparisons in Figure 12 and 13. From Figure 12, we compare the generation
process of f -DM and the cascaded DM. It is clear that f -DM conducts coarse-to-fine generation in
a more natural way, and the results will not suffer from error propagation. As shown in Figure 13,
LDM outputs are easily affected by the chosen decoder. VQVAE decoder tends output blurry im-
ages; the output from VQGAN decoder has much finer details while remaining noticable artifacts
(e.g., eyes, furs). By contrast, f -DM perform stably for both latent spaces.

18

https://image-net.org/download.php


Preprint. In progress

Figure 11: An illustration of the modified U-Net architecture. Time conditioning is omitted. The
parameters are partially shared across stages based on the resolutions. Stage-specific adapters are
adopted to transform the input dimensions.

Figure 12: Additional comparisons with Cascaded DM on AFHQ. ↑ Comparison of the reverse
diffusion process from 162 to 2562. We visualize the denoised outputs (xt) and the corresponding
next noised input (zs) near the start & end of each resolution diffusion. ↓ Comparison of random
samples generated by Cascaded DM and f -DM-DS.

E.2 CONDITIONAL GENERATION

We include additional results of conditional generation, i.e., super-resolution (Figure 14) and de-
blurring (Figure 15). We also show the comparison with or without the proposed gradient-based
initialization, which greatly improves the faithfulness of conditional generation when the input noise
is high (e.g., 16× 16 input).
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Figure 13: Additional comparisons with LDMs on AFHQ.

E.3 ADDITIONAL QUALITATIVE RESULTS

Finally, we provide additional qualitative results for our unconditional models for FFHQ (Fig-
ure 16,21), AFHQ (Figure 17), LSUN (Figure 18) and our class-conditional ImageNet model (Fig-
ure 19,20).
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Figure 14: Additional examples of super-resolution (SR) with the unconditional f -DM-DS trained
on AFHQ. ↑ The same input image with various resolution 162, 322, 642, 1282. We sample 3 random
seeds for each resolution input. We also show the difference with and without applying gradient-
based initialization (Grad-Init) on z. ↓ SR results of various 162 inputs.
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Figure 15: Additional examples of de-blurring with the unconditional f -DM-Blur-G trained on
AFHQ. ↑ The same input image with various Gaussian kernel sizes σ = 15, 9, 4, 1.4. We sample
3 random seeds for each resolution input. We also show the difference with and without applying
gradient-based initialization (Grad-Init) on z. ↓ Deblurred results of various blur images.
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Figure 16: Random samples generated by five f -DMs trained on FFHQ 256 × 256. All faces
presented are synthesized by the models, and are not real identities.
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Figure 17: Random samples generated by five f -DMs trained on AFHQ 256× 256.
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Figure 18: Random samples generated by f -DMs trained on LSUN-Church & -Bed 256× 256.
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Figure 19: Random samples generated by f -DM-DS/VQVAE trained on ImageNet 256× 256 with
classifier-free guidance (s = 3). Classes from top to bottom: red panda, robin, daisy, valley, trifle,
comic book.

26



Preprint. In progress

Figure 20: Random samples generated by f -DM-DS/VQVAE trained on ImageNet 256× 256 with
classifier-free guidance (s = 3). Classes from top to bottom: school bus, pizza, seashore, photo-
copier, golden retriever, axolotl.
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Figure 21: Random samples generated by f -DM-DS trained on FFHQ 1024 × 1024. All faces
presented are synthesized by the models, and are not real identities.
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