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Abstract
While the general idea of self-supervised learn-
ing is identical across modalities, the actual al-
gorithms and objectives differ widely because
they were developed with a single modality in
mind. To get us closer to general self-supervised
learning, we present data2vec, a framework that
uses the same learning method for either speech,
NLP or computer vision. The core idea is to pre-
dict latent representations of the full input data
based on a masked view of the input in a self-
distillation setup using a standard Transformer ar-
chitecture. Instead of predicting modality-specific
targets such as words, visual tokens or units of
human speech which are local in nature, data2vec
predicts contextualized latent representations that
contain information from the entire input. Ex-
periments on the major benchmarks of speech
recognition, image classification, and natural lan-
guage understanding demonstrate a new state of
the art or competitive performance to predom-
inant approaches. Models and code are avail-
able at www.github.com/pytorch/fairseq/
tree/master/examples/data2vec.

1. Introduction
Self-supervised learning builds representations of data with-
out human annotated labels which led to significant ad-
vances in natural language processing (NLP; Peters et al.
2018; Radford et al. 2018; Devlin et al. 2019; Brown et al.
2020), speech processing (van den Oord et al., 2018; Schnei-
der et al., 2019; Baevski et al., 2020b) as well as computer
vision (Chen et al., 2020; 2021b; Caron et al., 2021; Bao
et al., 2021; He et al., 2021). Self-supervised representa-
tions have even enabled completely unsupervised learning
in tasks such as machine translation (Lample et al., 2018)
and speech recognition (Baevski et al., 2021).

1Meta AI 2SambaNova, work done while at Meta AI. Corre-
spondence to: Alexei Baevski <abaevski@fb.com>, Michael Auli
<michaelauli@fb.com>.

Research in self-supervised algorithms has focused on in-
dividual modalities which results in specific designs and
learning biases. For example, in speech processing, there
is no vocabulary of speech units over which we can define
a self-supervised learning task such as words in NLP1 and
therefore several prominent models are equipped with mech-
anisms to learn an inventory of speech units (Baevski et al.,
2020b; Hsu et al., 2021). A similar problem exists for com-
puter vision, where researchers either learn discrete visual
tokens (Radford et al., 2021a; Bao et al., 2021), regress
the input (He et al., 2021) or learn representations invariant
to data augmentation (Chen et al., 2020; Grill et al., 2020;
Caron et al., 2021).

While learning biases are certainly helpful, it is often un-
clear whether they will generalize to other modalities. More-
over, leading theories on the biology of learning (Friston &
Kiebel, 2009; Friston, 2010) imply that humans likely use
similar learning processes to understand the visual world as
they do for language. Relatedly, general neural network ar-
chitectures have been shown to perform very well compared
to modality-specific counterparts (Jaegle et al., 2021b).

In an effort to get closer to machines that learn in gen-
eral ways about the environment, we designed data2vec, a
framework for general self-supervised learning that works
for images, speech and text where the learning objective
is identical in each modality. The present work unifies the
learning algorithm but still learns representations individu-
ally for each modality. We hope that a single algorithm will
make future multi-modal learning simpler, more effective
and lead to models that understand the world better through
multiple modalities.

Our method combines masked prediction (Devlin et al.,
2019; Baevski et al., 2020b; Bao et al., 2021) with the learn-
ing of latent target representations (Grill et al., 2020; Caron
et al., 2021) but generalizes the latter by using multiple net-
work layers as targets and shows that this approach works
across several modalities. Specifically, we train an off-the-
shelf Transformer network (Vaswani et al., 2017) which we
use either in teacher or student mode (Illustration in Fig-

1This is true for many languages but not for certain Asian
languages.
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Figure 1. Illustration of how data2vec follows the same learning process for different modalities. The model first produces representations
of the original input example (teacher mode) which are then regressed by the same model based on a masked version of the input. The
teacher parameters are an exponentially moving average of the student weights. The student predicts the average of K network layers of
the teacher (shaded in blue).

ure 1): we first build representations of the full input data
whose purpose is to serve as targets in the learning task
(teacher mode). Next, we encode a masked version of the
input sample with which we predict the full data represen-
tations (student mode). The weights of the teacher are an
exponentially decaying average of the student (He et al.,
2019; Grill et al., 2020; Caron et al., 2021). Since differ-
ent modalities have vastly different inputs, e.g., pixels vs.
words, we use modality-specific feature encoders and mask-
ing strategies from the literature.

Since our method works with the latent network representa-
tions of the learner itself, it can be seen as a simplification
of many modality-specific designs such as learning a fixed
set of visual tokens (Radford et al., 2021a; van den Oord
et al., 2017), or normalization of the input to create suitable
targets (He et al., 2021), or the learning of a vocabulary
of discrete speech units (Baevski et al., 2020b; Hsu et al.,
2021). Moreover, our target representations are continuous
and contextualized, through the use of self-attention, which
makes them richer than a fixed set of targets and/or targets
based on local context such as used in most prior work.

Experimental results show data2vec to be effective in all
three modalities, setting a new state of the art for ViT-B with
single models and ViT-L on ImageNet-1K, improving over
the best prior work in speech processing on speech recogni-
tion (Baevski et al., 2020b; Hsu et al., 2021) and outperform-
ing a like for like RoBERTa baseline on the GLUE natural
language understanding benchmark (Liu et al., 2019).

2. Related work
Self-supervised learning in computer vision. Unsuper-
vised pre-training for computer vision has been a very active
area of research with methods contrasting representations
of augmentations of the same image, entirely different im-
ages (Chen et al., 2020; Grill et al., 2020; Caron et al., 2021;

Chen et al., 2021b) as well as online clustering (Caron et al.,
2020). Similar to our work, both BYOL (Grill et al., 2020)
and DINO (Caron et al., 2021) regress neural network rep-
resentations of a momentum encoder, but our work differs
in that it uses a masked prediction task and we regress mul-
tiple neural network layer representations instead of just the
top layer which we find to be more effective. Moreover,
data2vec works for multiple modalities.

The most recent work focuses on training vision Trans-
formers (Dosovitskiy et al., 2020) with masked prediction
objectives (Bao et al., 2021; He et al., 2021; Xie et al., 2021)
whose performance surpasses supervised-only training on
ImageNet-1K. Several of these methods predict visual to-
kens (Bao et al., 2021; He et al., 2021; Dong et al., 2022)
learned in a separate step before pre-training (van den Oord
et al., 2017; Ramesh et al., 2021), during pretraining (Zhou
et al., 2021), and others directly predict the input pixels (He
et al., 2021; Xie et al., 2021).

Instead, data2vec predicts the latent representations of the
input data. Another difference to this body of work is that
the latent target representations are contextualized, incor-
porating relevant features from the entire image instead of
targets which contain information isolated to the current
patch, such as visual tokens or pixels.

Self-supervised learning in NLP. Pre-training has been
very successful in advancing natural language understand-
ing (McCann et al., 2017; Peters et al., 2018; Radford et al.,
2018; Baevski et al., 2019; Devlin et al., 2019; Yang et al.,
2019; Brown et al., 2020). The most prominent model is
BERT (Devlin et al., 2019) which solves a masked predic-
tion task where some of the input tokens are blanked out in
order to be predicted given the remaining input. For many
languages it is easy to determine word boundaries and most
methods therefore predict word or sub-word units for pre-
training. There is also work on knowledge distillation to
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obtain smaller BERT-style models, both for pre-training and
fine-tuning (Jiao et al., 2020).

Compared to prior NLP algorithms, data2vec does not pre-
dict discrete linguistic tokens such as words, sub-words or
bytes but rather a continuous and contextualized representa-
tion. This has two advantages: first, the targets themselves
are not predefined, nor is their number limited. This enables
the model to adapt to a particular input example. Second,
targets are contextualized, taking context information into
account. This is unlike BERT-style models which learn
a single embedding for each target which needs to fit all
instances of a particular target in the data.

Self-supervised learning in speech. Work in self-
supervised learning for speech includes autoregressive mod-
els (van den Oord et al., 2018; Schneider et al., 2019;
Baevski et al., 2020a; Chung et al., 2019) as well as bi-
directional models (Baevski et al., 2020b; Hsu et al., 2021;
Ao et al., 2021; Chen et al., 2021a). Two prominent mod-
els, wav2vec 2.0 and HuBERT are based on predicting
discrete units of speech, either learned jointly during pre-
training (Baevski et al., 2020b), or in an iterative pipeline
approach (Hsu et al., 2021) where pre-training and cluster-
ing alternate.2 Another line of work directly reconstructs
the input features (Eloff et al., 2019; Liu et al., 2021).

In comparison to wav2vec 2.0, data2vec directly predicts
contextualized latent representations without quantization.
HuBERT discretizes representations from different layers
across iterations and predicts these discretized units whereas
data2vec predicts the average over multiple layers. Similar
to other modalities, there is work on distilling larger self-
supervised models into smaller models but primarily for the
purpose of efficiency (Chang et al., 2021).

Multimodal pre-training. There has been a considerable
body of research on learning representations of multiple
modalities simultaneously often using paired data (Aytar
et al., 2017; Radford et al., 2021b; Wang et al., 2021; Singh
et al., 2021) with the aim to produce cross-modal representa-
tions which can perform well on multi-modal tasks and with
modalities benefiting from each other through joint train-
ing (Alayrac et al., 2020; Akbari et al., 2021) with recent
methods exploring few-shot learning (Tsimpoukelli et al.,
2021). Our work does not perform multimodal training
but aims to unifiy the learning objective for self-supervised
learning in different modalities. We hope that this will en-
able better multimodal representations in the future.

2Quantization is optional for wav2vec 2.0 (Baevski et al.,
2020b; Zhang et al., 2020) but helpful for noisy speech (Chung
et al., 2021).

3. Method
data2vec is trained by predicting the model representations
of the full input data given a partial view of the input (Fig-
ure 1). We first encode a masked version of the training
sample (model in student mode) and then construct training
targets by encoding the unmasked version of the input with
the same model but when parameterized as an exponentially
moving average of the model weights (model in teacher
mode; Grill et al. 2020; Caron et al. 2021). The target rep-
resentations encode all of the information in the training
sample and the learning task is for the student to predict
these representations given a partial view of the input.

3.1. Model architecture

We use the standard Transformer architecture (Vaswani et al.,
2017) with a modality-specific encoding of the input data
borrowed from prior work:3 for computer vision, we use the
ViT-strategy of encoding an image as a sequence of patches,
each spanning 16x16 pixels, input to a linear transforma-
tion (Dosovitskiy et al., 2020; Bao et al., 2021). Speech
data is encoded using a multi-layer 1-D convolutional neural
network that maps 16 kHz waveform to 50 Hz representa-
tions (Baevski et al., 2020b). Text is pre-processed to obtain
sub-word units (Sennrich et al., 2016; Devlin et al., 2019),
which are then embedded in distributional space via learned
embedding vectors. We detail these methods below (§4).

3.2. Masking

After the input sample has been embedded as a sequence
of tokens, we mask part of these units by replacing them
with a learned MASK embedding token and feed the se-
quence to the Transformer network. For computer vision,
we follow the block-wise masking strategy of Bao et al.
(2021), for speech we mask spans of latent speech represen-
tations (Baevski et al., 2020b) and for language we mask
tokens (Devlin et al., 2019); §4 details each strategy.

3.3. Training targets

The model is trained to predict the model representations of
the original unmasked training sample based on an encoding
of the masked sample. We predict model representations
only for time-steps which are masked. The representations
we predict are contextualized representations, encoding the
particular time-step but also other information from the
sample due to the use of self-attention in the Transformer
network.4 This is an important difference to BERT (De-

3While we used Transformer networks, alternative architectures
may be equally applicable.

4In preliminary experiments, we found that additional context
information for the targets was helpful since masking some of the
time-steps when in teacher mode resulted in lower accuracy.
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vlin et al., 2019), wav2vec 2.0 (Baevski et al., 2020b) or
BEiT, MAE, SimMIM, and MaskFeat (Bao et al., 2021;
He et al., 2021; Xie et al., 2021; Wei et al., 2021) which
predict targets lacking contextual information. Below, we
detail how we parameterize the teacher which predicts the
network representations that will serve as targets as well as
how we construct the final target vectors to be predicted by
the model in student-mode.

Teacher parameterization. The encoding of the un-
masked training sample is parameterized by an exponen-
tially moving average (EMA) of the model parameters
(θ; Tarvainen & Valpola 2018; Grill et al. 2020; Caron et al.
2021) where the weights of the model in target-mode ∆ are:

∆← τ∆ + (1− τ) θ

We use a schedule for τ that linearly increases this parameter
from τ0 to the target value τe over the first τn updates after
which the value is kept constant for the remainder of train-
ing. This strategy results in the teacher being updated more
frequently at the beginning of training, when the model is
random, and less frequently later in training, when good
parameters have already been learned. We found it more
efficient and slightly more accurate to share the parameters
of the feature encoder and the positional encoder between
the teacher and student networks.

Targets. Training targets are constructed based on the out-
put of the topK blocks of the teacher network for time-steps
which are masked in student-mode.5 The output of block
l at time-step t is denoted as alt. We apply a normaliza-
tion to each block to obtain âlt before averaging the top K
blocks yt = 1

K

∑L
l=L−K+1 â

l
t for a network with L blocks

in total to obtain the training target yt for time-step t. This
creates training targets that are to be regressed by the model
when in student mode. In preliminary experiments we found
that averaging performed as well as predicting each block
separately with a dedicated projection while enjoying the
advantage of being more efficient.

Normalizing the targets helps prevent the model from col-
lapsing into a constant representation for all time-steps and
it also prevents layers with high norm to dominate the tar-
get features. For speech representations, we use instance
normalization (Ulyanov et al., 2016) without any learned
parameters over the current input sample since neighbor-
ing representations are highly correlated due to the small
stride over the input data, while for NLP and vision we
found parameter-less layer normalization (Ba et al., 2016)
to be sufficient. Variance-Invariance-Covariance regulariza-
tion (Bardes et al., 2021) also addresses this problem but

5We generally use the output of the FFN prior to the last resid-
ual connection in each block as target. See the ablation in §5.4.

we found the above strategy to perform well and it does not
introduce additional hyper-parameters.

3.4. Objective

Given contextualized training targets yt, we use a Smooth
L1 loss to regress these targets:

L(yt, ft(x)) =

{
1
2 (yt − ft(x))2/β |yt − ft(x)| ≤ β
(|yt − ft(x)| − 1

2β) otherwise

where β controls the transition from a squared loss to an L1

loss, depending on the size of the gap between the target yt
and the model prediction ft(x) at time-step t. The advantage
of this loss is that it is less sensitive to outliers, however, we
need to tune the setting of β.

4. Experimental setup
We experiment with two model sizes: data2vec Base and
data2vec Large, containing either L = 12 or L = 24 Trans-
former blocks with H = 768 or H = 1024 hidden dimen-
sion (with 4×H feed-forward inner-dimension). EMA up-
dates are performed in fp32 for numerical stability (Manohar
et al., 2021).

4.1. Computer vision

We embed images of 224x224 pixels as patches of 16x16
pixels (Dosovitskiy et al., 2020). Each patch is linearly
transformed and a sequence of 196 representations is input
to a standard Transformer. We follow BEiT (Bao et al.,
2021) by masking blocks of multiple adjacent patches where
each block contains at least 16 patches with a random aspect
ratio. Different to their work, we found it more accurate to
mask 60% of the patches instead of 40%. We use randomly
applied resized image crops, horizontal flipping, and color
jittering (Bao et al., 2021). We use the same modified image
both in teacher mode and student mode.

ViT-B models are pre-trained for 800 epochs. As batch
size we use 2,048 for ViT-B and 8,192 for ViT-L. We
use Adam (Kingma & Ba, 2015) and a cosine sched-
ule (Loshchilov & Hutter, 2016) with a single cycle where
we warm up the learning rate for 40 epochs to 0.002 for
ViT-B and for 80 epochs to 0.001 for ViT-L after which the
learning rate is annealed following the cosine schedule. For
ViT-B and ViT-L, we use β = 2, K = 6 and τ = 0.9998
as a constant value with no schedule which worked well.
We use stochastic depth with rate 0.2 (Huang et al., 2016).
For ViT-L, we train for 1,600 epochs in total, the first 800
epochs use τ = 0.9998, we then reset the learning rate
schedule and the teacher weights to the student and continue
for another 800 epochs with τ = 0.9999.

For image classification we mean-pool the output of the



data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language

last Transformer block and input it to a softmax-normalized
classifier. We fine-tune ViT-B for 100 epochs and ViT-L
for 50 epochs using Adam and a cosine schedule where
we warmup up the learning rate for 20 epochs to 0.004 for
ViT-B and for 5 epochs to 0.004 for ViT-L after which the
learning rate follows the cosine schedule. We build on the
open source implementation of BEiT (Bao et al., 2021).

4.2. Speech processing

Models are implemented in fairseq (Ott et al., 2019) and take
as input 16 kHz waveform which is processed by a feature
encoder (Baevski et al., 2020b) containing seven temporal
convolutions with 512 channels, strides (5,2,2,2,2,2,2) and
kernel widths (10,3,3,3,3,2,2). This results in an encoder
output frequency of 50 Hz with a stride of about 20ms
between each sample, and a receptive field of 400 input
samples or 25ms of audio. The raw waveform input to the
encoder is normalized to zero mean and unit variance.

The masking strategy for the Base model is also identical
to Baevski et al. (2020b): we sample p = 0.065 of all
time-steps to be starting indices and mask the subsequent
ten time-steps. This results in approximately 49% of all
time-steps to be masked for a typical training sequence.
During pre-training we linearly anneal τ using τ0 = 0.999,
τe = 0.9999 and τn = 30, 000, average the top K = 8
blocks as targets and found a simple L2 loss to work well.

We optimize with Adam (Kingma & Ba, 2015), with a
peak learning rate of 5× 10−4 for data2vec Base. The Base
model uses a tri-stage scheduler which linearly warms up the
learning rate over the first 3% of updates, holds it for 90%
of updates and then linearly decays it over the remaining
7%. We train data2vec Base for 400K updates with a batch
size of 63 minutes of audio (61M frames). We follow the
fine-tuning regime of wav2vec 2.0 (Baevski et al., 2020b)
whose hyper-parameters depend on the labeled data setup.

4.3. Natural language processing

We build on the BERT re-implementation RoBERTa (Liu
et al., 2019) available in fairseq (Ott et al., 2019). The input
data is tokenized using a byte-pair encoding (Sennrich et al.,
2016) of 50K types and the model learns an embedding for
each type (Devlin et al., 2019; Liu et al., 2019) Once the
data is embedded, we apply the BERT masking strategy to
15% of uniformly selected tokens: 80% are replaced by a
learned mask token, 10% are left unchanged and 10% are
replaced by randomly selected vocabulary token; we do not
use the next-sentence prediction task. We also consider the
wav2vec 2.0 strategy of masking spans of four tokens.

For pre-training we use τ0 = 0.999, τe = 0.9999 and
τn = 100, 000, K = 10 and set β = 4. The model is
optimized with Adam over 1M updates using a tri-stage

Table 1. Computer vision: top-1 validation accuracy on ImageNet-
1K with ViT-B and ViT-L models. data2vec ViT-B was trained
for 800 epochs and ViT-L for 1,600 epochs. We distinguish be-
tween individual models and setups composed of multiple models
(BEiT/PeCo train separate visual tokenizers and PeCo also distills
two MoCo-v3 models).

ViT-B ViT-L

Multiple models
BEiT (Bao et al., 2021) 83.2 85.2
PeCo (Dong et al., 2022) 84.5 86.5

Single models
MoCo v3 (Chen et al., 2021b) 83.2 84.1
DINO (Caron et al., 2021) 82.8 -
MAE (He et al., 2021) 83.6 85.9
SimMIM (Xie et al., 2021) 83.8 -
iBOT (Zhou et al., 2021) 83.8 -
MaskFeat (Wei et al., 2021) 84.0 85.7
data2vec 84.2 86.6

learning rate schedule (5%, 80% and 15% of updates for
warm-up, holding and linearly decaying, respectively). The
peak learning rate is 2× 10−4. We train on 16 GPUs with a
total batch size of 256 sequences and each sequence is up
to 512 tokens. For downstream tasks, we fine-tune the pre-
trained model with four different learning rates (1× 10−5,
2× 10−5, 3× 10−5, 4× 10−5) and choose the one which
performs best across all considered NLP downstream tasks.

5. Results
5.1. Computer vision

To evaluate our approach for computer vision, we pre-
train data2vec on the images of the ImageNet-1K training
set (Deng et al., 2009) and fine-tune the resulting model
for image classification using the labeled data of the same
benchmark (§4.1). Following standard practice, models
are evaluated in terms of top-1 accuracy on the validation
set. We distinguish between results based on a single self-
supervised model, and results which train a separate visual
tokenizer on additional data (Bao et al., 2021) or distill other
self-supervised models (Dong et al., 2022).

Table 1 shows that data2vec outperforms prior work with
ViT-B and ViT-L in the single model setting and all prior
work for ViT-L. Predicting contextualized latent represen-
tations in a masked prediction setup can perform very well
compared to approaches which predict local targets such
as the original input pixels (He et al., 2021; Xie et al.,
2021), engineered image features (Wei et al., 2021) or visual
tokens (Bao et al., 2021). It also outperforms prior self-
distillation methods (Caron et al., 2021) which regressed
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Table 2. Speech processing: word error rate on the Librispeech test-other test set when fine-tuning pre-trained models on the Libri-light
low-resource labeled data setups (Kahn et al., 2020) of 10 min, 1 hour, 10 hours, the clean 100h subset of Librispeech and the full 960h of
Librispeech. Models use the 960 hours of audio from Librispeech (LS-960) as unlabeled data. We indicate the language model used
during decoding (LM). Results for all dev/test sets and other LMs can be found in the supplementary material (Table 5).

Unlabeled LM Amount of labeled data
data 10m 1h 10h 100h 960h

Base models
wav2vec 2.0 (Baevski et al., 2020b) LS-960 4-gram 15.6 11.3 9.5 8.0 6.1
HuBERT (Hsu et al., 2021) LS-960 4-gram 15.3 11.3 9.4 8.1 -
WavLM (Chen et al., 2021a) LS-960 4-gram - 10.8 9.2 7.7 -

data2vec LS-960 4-gram 12.3 9.1 8.1 6.8 5.5

Large models
wav2vec 2.0 (Baevski et al., 2020b) LS-960 4-gram 10.3 7.1 5.8 4.6 3.6
HuBERT (Hsu et al., 2021) LS-960 4-gram 10.1 6.8 5.5 4.5 3.7
WavLM (Chen et al., 2021a) LS-960 4-gram - 6.6 5.5 4.6 -

data2vec LS-960 4-gram 8.4 6.3 5.3 4.6 3.7

the final layer of the student network while inputting two
different augmented versions of an image to the student and
teacher networks.

5.2. Speech processing

For speech processing, we pre-train data2vec on the 960
hours of speech audio data from Librispeech (LS-960). This
dataset contains relatively clean speech audio from read
audiobooks in English and is a standard benchmark in the
speech community. To get a sense of performance in dif-
ferent resource settings, we fine-tune models for automatic
speech recognition using different amounts of labeled data,
ranging from just 10 minutes to 960 hours. We also com-
pare to other work from the literature, including wav2vec
2.0 (Baevski et al., 2020b) and HuBERT (Hsu et al., 2021),
two popular algorithms for speech representation learning
relying on discrete units of speech.

Table 2 shows improvements for most labeled data setups
with the largest gains for 10 minutes of labeled data (20%
relative WER improvement) for the Base models. For Large
models, there are strong improvments for the smallest la-
beled data setups, and comparable performance for the
resource-rich settings of 100 hours and 960 hours of la-
beled data. Our results suggest that learning discrete units
is not required when rich contextualized targets are used
and that learning contextualized targets during pre-training
improves performance.

5.3. Natural language processing

To get a sense of how data2vec performs for language, we
adopt the same training setup as BERT (Devlin et al., 2019)

by pre-training on the Books Corpus (Zhu et al., 2015) and
English Wikipedia data over 1M updates and a batch size
of 256 sequences. We evaluate on the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018) which includes tasks for natural language inference
(MNLI, QNLI, RTE), sentence similarity (MRPC, QQP and
STS-B), grammaticality (CoLA), and sentiment analysis
(SST-2).6 We fine-tune data2vec separately on the labeled
data provided by each task and report the average accuracy
on the development sets over five fine-tuning runs. We
compare to the published BERT results as well as to the
results we obtain by retraining RoBERTa in the current
setup (Baseline; Liu et al. 2019) which provides a more
suitable baseline to data2vec since we build on their open
source code.

The results (Table 3) show that data2vec outperforms the
RoBERTa baseline. When we mask spans of four BPE
tokens with masking probability 0.35 (Baevski et al., 2020b),
then results improve further.7 This strategy does not leave
tokens unmasked or uses random targets as for BERT (§4.3).

6MNLI (Multi Genre Natural Language Inference; Williams
et al. 2018), Stanford Question Answering Dataset (QNLI; Ra-
jpurkar et al. 2016), Recognizing Textual Entailment (RTE;Dagan
et al. 2006; Haim et al. 2006; Giampiccolo et al. 2007; Bentivogli
et al. 2009), and we exclude Winograd NLI task from our results
similar to Devlin et al. (2019), Microsoft Research Paragraph
Corpus (MRPC; Dolan & Brockett 2005), Quora Question Pairs
benchmark (QQP), and the Semantic Textual Similarity Bench-
mark (STS-B; Cer et al. 2018), Corpus of Linguistic Acceptability
(CoLA; Warstadt et al. 2018), Stanford Sentiment Treebank (SST-
2; Socher et al. 2013)

7Note, that we used a cosine learning rate schedule for this
result.
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Table 3. Natural language processing: GLUE results on the development set for single-task fine-tuning of individual models. For MNLI
we report accuracy on both the matched and unmatched dev sets, for MRPC and QQP, we report the unweighted average of accuracy and
F1, for STS-B the unweighted average of Pearson and Spearman correlation, for CoLA we report Matthews correlation and for all other
tasks we report accuracy. BERT Base results are from Wu et al. (2020) and our baseline is RoBERTa re-trained in a similar setup as BERT.
We also report results with wav2vec 2.0 style masking of spans of four BPE tokens with no unmasked tokens or random targets.

MNLI QNLI RTE MRPC QQP STS-B CoLA SST Avg.

BERT (Devlin et al., 2019) 84.0/84.4 89.0 61.0 86.3 89.1 89.5 57.3 93.0 80.7
Baseline (Liu et al., 2019) 84.1/83.9 90.4 69.3 89.0 89.3 88.9 56.8 92.3 82.5

data2vec 83.2/83.0 90.9 67.0 90.2 89.1 87.2 62.2 91.8 82.7
+ wav2vec 2.0 masking 82.8/83.4 91.1 69.9 90.0 89.0 87.7 60.3 92.4 82.9
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Figure 2. Predicting targets which are the average of multiple layers is more robust than predicting only the top most layer (K = 1)
for most modalities. We show the performance of predicting the average of K teacher layer representations (§3.3). The effect is very
pronounced for speech and NLP while for vision there is still a slight advantage of predicting more than a single layer.

To our knowledge this is the first successful pre-trained
NLP model which does not use discrete units (words, sub-
words, characters or bytes) as the training target. Instead,
the model predicts a contextualized latent representation
emerging from self-attention over the entire unmasked text
sequence. This enables a learning task where the model
needs to predict targets with specific properties of the current
text sequence rather than representations which are generic
to every text sequence in which the particular discrete unit
occurs. Moreover, the set of training targets is not fixed, i.e.,
not a closed vocabulary, and the model can choose to define
new target types as it sees fit, akin to an open vocabulary
setting.

5.4. Ablations

Layer-averaged targets. One of the main differences of
our method compared to BYOL is the use of targets which
are based on averaging multiple layers from the teacher net-
work (§3.3). This idea was partly inspired by the fact that the
top layers of wav2vec 2.0 do not perform as well for down-
stream tasks as layers in the middle of the network (Baevski
et al., 2021; Pasad et al., 2021).

In the next experiment, we measure performance for all
three modalities when averaging K = 1, . . . , 12 layers

where K = 1 corresponds to predicting only the top layer
similar to BYOL. For faster experimental turn-around, we
train Base models with L = 12 layers in total. For speech,
we pre-train for 200K updates on Librispeech, fine-tune on
the 10 hour labeled split of Libri-light (Kahn et al., 2019)
and report word error rate without a language model on dev-
other. For NLP, we report the average GLUE score on the
validation set (§5.3) and for computer vision we pre-train
models for 300 epochs and report the top-1 accuracy on
ImageNet (§5.1).

Figure 2 shows that targets based on multiple layers im-
proves over using only the top layer (K = 1) for all modal-
ities. Using all layers is generally a good choice and only
slightly worse than a carefully tuned value of K. Neural
networks build features over multiple layers and different
types of features are extracted at different layers. Using
features from multiple layers enriches the self-supervised
task and improves accuracy.

Target contextualization. Teacher representations are
based on self-attention over the entire input data which re-
sults in contextualized targets. This distinguishes data2vec
from many other self-supervised approaches which con-
struct a learning task by predicting or reconstructing local
parts of the input (§2). This poses the natural question of
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Figure 3. More contextualized target representations lead to better
accuracy. We mask all but a fraction of the data when constructing
the target representations in the teacher for pre-training and report
downstream performance for speech and vision. Time-steps for
speech are more fine-grained (20ms patches) compared to vision
(16x16 pixels per patch).

whether contextualized targets are required for data2vec to
work well.

In order to get a better sense of this, we construct target rep-
resentations which do not have access to the entire input sam-
ple but rather only a pre-defined fraction of it. Concretely,
we restrict the self-attention mechansim of the teacher to
only be able to access a portion of the input surrounding the
current time-step. Once the model is trained, we fine-tune it
so that it can access the full context size. Figure 3 shows that
larger context sizes lead to better downstream performance.
The best accuracy is achieved when the entire input sample
is visible. This shows that richer target representations can
indeed lead to better performance.

Target feature type. Transformers blocks contain several
layers which can each serve as targets. To get a sense of how
different layers impact performance, we pre-train speech
models on Librispeech using the features from different
layers as target features. Table 4 shows that the output of
the feedforward network (FFN) block works best while the
output of the self-attention block does not yield a usable
model. We believe this is because the self-attention output
is before the residual connection and features are heavily
biased towards other time-steps. This issue is alleviated by
the use of the FFN features since these include the features

Table 4. Effect of using different features from the teacher model as
targets: we compare using the output of the self-attention module,
the feed-forward module (FFN) as well as after the final resid-
ual connection (FFN + residual) and layer normalization (End of
block). Results are not directly comparable to the main results
since we use a reduced setup (§5.4).

Layer WER

self-attention 100.0
FFN 13.1
FFN + residual 14.8
End of block 14.5

before the self-attention as well.

6. Discussion
Modality-specific feature extractors and masking. Our
primary is to design a single learning mechanism for differ-
ent modalities. Despite the unified learning regime, we still
use modality-specific features extractors and masking strate-
gies. This makes sense given the vastly different nature of
the input data: for example, in speech we learn from a very
high resolution input (16 kHz waveform) which contains
hundreds of thousands of samples for typical utterances.
To process this, we apply a multilayer convolutional neu-
ral network to obtain a 50 Hz feature sequence. For NLP,
inputs are of vastly lower resolution in the form of much
shorter word sequences which can be directly embedded
in distributional space via a lookup table. The type of data
also impacts how we should mask the input to create a chal-
lenging learning task: removing individual words provides
a sufficiently challenging task but for speech it is neces-
sary to mask spans since adjacent audio samples are highly
correlated with each other.

Relatedly, there has been recent work on a Transformer
architecture that can directly operate on the raw data of
different modalities without modality-specific feature en-
coders (Jaegle et al., 2021b;a). Their work is focused on
supervised learning for classification tasks and we believe
that our work is complementary.

Structured and contextualized targets. One of the main
differences of data2vec to most other masked prediction
work (Devlin et al., 2019; Baevski et al., 2020b; Ling et al.,
2020; Bao et al., 2021; He et al., 2021; Wei et al., 2021) is
that the features of the training targets are contextualized
since the features are built with self-attention over the entire
unmasked input in teacher mode. And while BYOL (Grill
et al., 2020) and DINO (Caron et al., 2021) also use latent
target representations based on the entire input, their focus is
on learning transformation-invariant representations instead
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of structural information within a sample.

One exception is HuBERT (Hsu et al., 2021) which builds a
fixed set of discrete target units by clustering Transformer
layer representations. In comparison, data2vec has no limi-
tation on the number of target units. Instead of representing
each instance of particular discrete target unit with the same
set of features, data2vec can build target features that are
specific to the current sequence.

For NLP, we believe data2vec is the first work that does not
rely on pre-defined target units. Most other work uses either
words, sub-words (Radford et al., 2018; Devlin et al., 2019),
characters (Tay et al., 2021) or even bytes (Xue et al., 2021).
Aside, defining word boundaries is not straightforward for
some Asian languages. Contextualized targets enable inte-
grating features from the entire sequence into the training
target which provides a richer self-supervised task. Further-
more, the representation of each instance of a particular unit
(word/sub-word/character/byte) can differ for the masked
prediction task. This enables to associate a different mean-
ing to a particular depending on the context it occurs in. It
also relieves the model from the need to learn a single set of
features for a target unit that fits all instances of this unit.

Representation collapse. A common issue with algo-
rithms which learn their own targets is representation col-
lapse. This occurs when the model produces very similar
representations for all masked segments which results in
a trivial task (Jing et al., 2021). To deal with this issue,
contrastive models such as wav2vec 2.0 (Baevski et al.,
2020b) use the same target representation both as a positive
and a negative example. BYOL (Grill et al., 2020) do not
optimize the teacher parameters to minimize the loss and Vi-
cReg (Bardes et al., 2021) adds an explicit loss encouraging
variance among different representations.

We found that collapse is most likely to happen in the fol-
lowing scenarios: First, the learning rate is too large or the
learning rate warmup is too short which can often be solved
by tuning the respective hyperparameters. Second, τ is too
low which leads to student model collapse and is then prop-
agated to the teacher. This can be addressed by tuning τ0,
τe and τn. Third, we found collapse to be more likely for
modalities where adjacent targets are very correlated and
where longer spans need to be masked, e.g., speech. We
address this by promoting variance through normalizing tar-
get representations over the sequence or batch (Grill et al.,
2020). For models where targets are less correlated, such as
vision and NLP, momentum tracking is sufficient.

7. Conclusion
Recent work showed that uniform model architectures can
be effective for multiple modalities (Jaegle et al., 2021b).

In a similar spirit, we show that a single self-supervised
learning regime can be effective for vision, speech and lan-
guage. The key idea is to regress contextualized latent rep-
resentations based on a partial view of the input. data2vec
outperforms prior self-supervised algorithms on ImageNet-
1K for ViT-B single models and ViT-L models, it improves
over prior work on speech recognition for the low-resource
setups of Libri-light, and it outperforms RoBERTa for natu-
ral language understanding on GLUE in the original BERT
setup.

A single learning method for multiple modalities will make
it easier to learn across modalities and future work may
investigate tasks such as audio-visual speech recognition or
cross-modal retrieval. Our approach still uses modality-
specific input encoders and we adopt modality-specific
masking strategies. Future work may investigate a single
masking strategy that is modality-agnostic as well as jointly
training multiple modalities.
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A. Extended speech processing results

Table 5. Speech processing: word error rate on the Librispeech dev/test sets when training on the Libri-light low-resource labeled data
setups of 10 min, 1 hour, 10 hours and the clean 100h subset of Librispeech. Models use the audio of Librispeech (LS-960) as unlabeled
data.

Model Unlabeled LM dev test
data clean other clean other

10 min labeled
wav2vec 2.0 Base (Baevski et al., 2020b) LS-960 4-gram 8.9 15.7 9.1 15.6
Hubert Base (Hsu et al., 2021) LS-960 4-gram 9.1 15.0 9.7 15.3

data2vec Base LS-960 4-gram 7.3 11.6 7.9 12.3

1h labeled
wav2vec 2.0 Base (Baevski et al., 2020b) LS-960 4-gram 5.0 10.8 5.5 11.3
Hubert Base (Hsu et al., 2021) LS-960 4-gram 5.6 10.9 6.1 11.3

data2vec Base LS-960 4-gram 4.0 8.5 4.6 9.1

10h labeled
wav2vec 2.0 Base (Baevski et al., 2020b) LS-960 4-gram 3.8 9.1 4.3 9.5
Hubert Base (Hsu et al., 2021) LS-960 4-gram 3.9 9.0 4.3 9.4

data2vec Base LS-960 4-gram 3.3 7.5 3.9 8.1

100h labeled
Noisy student (Park et al., 2020) LS-860 LSTM 3.9 8.8 4.2 8.6
IPL (Xu et al., 2020) LL-60K 4-gram+Transf. 3.2 6.1 3.7 7.1
SlimIPL (Likhomanenko et al., 2021) LS-860 4-gram+Transf. 2.2 4.6 2.7 5.2
wav2vec 2.0 Base (Baevski et al., 2020b) LS-960 4-gram 2.7 7.9 3.4 8.0
Hubert Base (Hsu et al., 2021) LS-960 4-gram 2.7 7.8 3.4 8.1

data2vec Base LS-960 4-gram 2.2 6.4 2.8 6.8

B. Comparison of loss functions
Table 6 shows that different choices of the loss function have a relatively small effect on final performance.

Table 6. Different pre-training losses on Librispeech dev-other (no language model).

WER

L2 17.1
L1 17.2
Smooth L1 (β = 0.08) 17.2
Smooth L1 (β = 0.25) 16.8
Smooth L1 (β = 0.5) 16.8
Smooth L1 (β = 1) 17.3

C. Speech masking parameter ablation
Our method requires different masking parameters for each modality and this makes intuitive sense: masking 15% of inputs
is effective for text but not for images since text tokens are highly semantic and it is sufficient to mask a smaller proportion
of the input to construct a useful task. We rely largely on settings from the literature, except for images, where we found that
a higher masking rate compared to BEiT works slightly better. When we tried tuning masking hyperparameters for other
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modalities than vision, we did not see significant improvements (e.g., see Table 7) for speech. The small improvements we
saw are likely to disappear after adding a language model.

Table 7. Ablation of speech masking parameters. Results are on Librispeech dev-other without a language model.

WER

baseline (mask prob = 0.65, mask len = 10) 17.1
mask prob = 0.8 17.2
mask prob = 0.5 17.3
mask len = 5 22.1
mask len = 15 18.9


