
Single-Stage Diffusion NeRF: A Unified Approach to
3D Generation and Reconstruction

Hansheng Chen,1,* Jiatao Gu,2 Anpei Chen,3 Wei Tian,1 Zhuowen Tu,4 Lingjie Liu,5 Hao Su4

1Tongji University 2Apple 3ETH Zürich
4University of California, San Diego 5University of Pennsylvania

Diffusion
Prior

NeRF
Decoder ⋯ ⋯ ⋯⋯

𝑝𝑝 𝑥𝑥
Training Testing

0 view

1 view

∞ views

⋯

⋯

⋯

⋯

Trained on
SRN Cars

Trained on
ABO Tables

Trained on
SRN Chairs

Multi-view training images
(3 views or more)

(a) Unconditional 3D Generation

(b) Single-View Reconstruction

Predicted novel viewsInput Extracted mesh

Extracted mesh

Figure 1. During training, SSDNeRF jointly learns triplane features of individual scenes, a shared NeRF decoder, and a triplane diffusion
prior. During testing, it can perform (a) unconditional generation, (b) single-view reconstruction, as well as multi-view reconstruction.

Abstract

3D-aware image synthesis encompasses a variety of
tasks, such as scene generation and novel view synthesis
from images. Despite numerous task-specific methods, de-
veloping a comprehensive model remains challenging. In
this paper, we present SSDNeRF, a unified approach that
employs an expressive diffusion model to learn a generaliz-
able prior of neural radiance fields (NeRF) from multi-view
images of diverse objects. Previous studies have used two-
stage approaches that rely on pretrained NeRFs as real data
to train diffusion models. In contrast, we propose a new
single-stage training paradigm with an end-to-end objective
that jointly optimizes a NeRF auto-decoder and a latent dif-
fusion model, enabling simultaneous 3D reconstruction and
prior learning, even from sparsely available views. At test
time, we can directly sample the diffusion prior for uncon-
ditional generation, or combine it with arbitrary observa-
tions of unseen objects for NeRF reconstruction. SSDNeRF
demonstrates robust results comparable to or better than
leading task-specific methods in unconditional generation
and single/sparse-view 3D reconstruction.6

*Work done during a remote internship with UCSD.
6Project page: https://lakonik.github.io/ssdnerf

1. Introduction
Synthesizing 3D visual contents has gained significant

attention in computer vision and graphics, thanks to ad-
vances in neural rendering and generative models. Al-
though numerous methods have emerged to handle individ-
ual tasks, such as single-/multi-view 3D reconstruction and
3D content generation, it remains a major challenge to de-
velop a comprehensive framework that bridges the state of
the art of multiple tasks. For instance, neural radiance fields
(NeRF) [31] have shown impressive results in novel view
synthesis by solving the inverse rendering problem via per-
scene fitting, which is suitable for dense-view inputs but dif-
ficult to generalize to sparse observations. In contrast, many
sparse-view 3D reconstruction methods [58, 8, 28] rely on
feed-forward image-to-3D encoders, but they are unable to
handle ambiguity in the occluded region and generate crisp
images. Regarding unconditional generation, 3D-aware
generative adversarial networks (GAN) [34, 5, 18, 14] are
partially limited in their usage of single-image discrimina-
tors, which cannot reason cross-view relationships to effec-
tively learn from multi-view data.

In this paper, we propose a unified approach to various
3D tasks (Fig. 1) by developing a holistic model that learns
generalizable 3D priors from multi-view images. Inspired

1

ar
X

iv
:2

30
4.

06
71

4v
2

 [
cs

.C
V

]
 1

7
A

pr
 2

02
3

https://lakonik.github.io/ssdnerf

by the success of 2D diffusion models [22, 50, 30, 41, 29],
we present the Single-Stage Diffusion NeRF (SSDNeRF),
which models the generative prior of scene latent codes with
a 3D latent diffusion model (LDM).

While similar LDMs have been applied in 2D and 3D
generation in previous work [54, 41, 13, 2, 47, 32], they
typically require two-stage training, where the first stage
pretrains the variational auto-encoders (VAE) [26] or auto-
decoders [35] without diffusion models. In the case of dif-
fusion NeRFs, however, we argue that two-stage training
induces noisy patterns and artifacts in the latent code due to
the uncertain nature of inverse rendering, particularly when
training from sparse-view data, which prevents the diffusion
model from learning a clean latent manifold effectively. To
address this issue, we introduce a novel single-stage training
paradigm that enables end-to-end learning of diffusion and
NeRF weights (§ 4.1). This approach blends the generative
and the rendering biases coherently for improved perfor-
mance overall and allows for training on sparse-view data.
Additionally, we show that the learned 3D priors of uncon-
ditional diffusion models can be exploited for flexible test-
time scene sampling from arbitrary observations (§ 4.2).

We evaluate SSDNeRF on multiple datasets of categori-
cal single-object scenes, demonstrating strong performance
overall. Our approach represents a significant step towards
a unified framework for various 3D tasks.

To summarize, our main contributions are as follows:

• We introduce SSDNeRF, a unified approach to all-
round performance in unconditional 3D generation and
image-based reconstruction;

• We propose a novel single-stage training paradigm
that jointly learns NeRF reconstruction and diffusion
model from multi-view images of a large number of
objects. Notably, this enables training on as sparse as
three views per scene, which is previously infeasible;

• A guidance-finetuning sampling scheme is developed
to exploit the learned diffusion priors for 3D recon-
struction from arbitrary number of views at test time.

2. Related Work

3D GANs The generative adversarial framework [16] has
been successfully adapted for 3D generation by integrating
projection-based rendering into the generator. A variety of
3D representations have been explored previously, includ-
ing point clouds, cuboids, spheres [27] and voxels [33] in
early works, the more recent radiance fields [4, 44, 12, 45,
49] and feature fields [34, 18, 5] with volume renderer, and
differentiable surface [14] with mesh renderer. The above
methods are all trained with 2D image discriminators that
are unable to reason cross-view relationships, making them
heavily dependent on model bias for 3D consistency. As
a result, multi-view data cannot be effectively exploited to

learn complex and diverse geometries. 3D GANs are mostly
applied in unconditional generation. Although 3D comple-
tion from images is possible through GAN inversion [12],
faithfulness is not guaranteed due to limited latent expres-
siveness, as shown in [32, 1].

View-Conditioned Regression and Generation Sparse-
view 3D reconstruction can be tackled by regressing novel
views from input images. Various architectures [8, 58, 28,
60] have been proposed to encode images into volume fea-
tures, which can be projected to supervised target views
through volume rendering. However, they cannot reason
ambiguity and generate diverse and meaningful contents,
which often leads to blurry results. In contrast, image-
conditioned generative models are better at synthesizing
distinct contents. 3DiM [56] proposes to generate novel
views from a view-conditioned image diffusion model, but
it lacks 3D consistency bias. [61, 11, 19] distill priors of
image-conditioned 2D diffusion models into NeRFs to en-
force 3D constraints. These methods are parallel to our
track as they model cross-view relationships in the image
space, while our model is inherently 3D.

Auto-Decoders and Diffusion NeRF NeRF’s per-scene
fitting scheme can be generalized to multi-scene fitting by
sharing part of the parameters across all scenes, leaving the
rest as individual scene codes [7]. Therefore, multi-scene
NeRFs can be trained as auto-decoders [35], where the code
bank and shared decoder weights are jointly learned. With
proper architectures, scene codes can be treated as latents
with Gaussian priors, allowing 3D completion and even
generation [24, 48, 38]. However, like 3D GANs, the latents
are not expressive enough for faithful reconstruction of de-
tailed objects. [2, 13] improve upon vanilla auto-decoders
with latent diffusion priors. DiffRF [32] leverages the dif-
fusion prior to perform 3D completion. All these methods
train the auto-decoders and diffusion models in two separate
stages, which is subject to the limitations in § 3.2.

3. Background
3.1. NeRF as an Auto-Decoder

Given a set of 2D images of a scene and their camera pa-
rameters, one can fit a scene model to reconstruct the light
field in 3D space, expressed by a plenoptic function yψ(r),
where r parameterizes the endpoint and direction of a ray
in the world space, ψ denotes the scene model parameters,
and y ∈ R3

+ represents the received light in RGB format.
NeRF [31] represents the light field as integrated radiance
along rays through the 3D volume. It models the scene ge-
ometry and appearance as functions of the position p ∈ R3

and view direction d ∈ R3 of a point in the world space, ex-
pressed as ρψ(p) and cψ(p, d) respectively, where ρ ∈ R+

is the density output and c ∈ R3
+ is the RGB color output.

Differentiable volume rendering is applied to compose the

2

received light y from multiple point samples along a ray r.
NeRF can also generalize to multi-scene settings by shar-

ing part of the model parameters across all scenes [7]. Given
observations of multiples scenes {ygt

ij , r
gt
ij }, where ygt

ij , r
gt
ij

is the j-th pair of pixel RGB and ray of the i-th scene, one
can optimize the per-scene codes {xi} and shared parame-
ters ψ by minimizing the L2 rendering loss:

Lrend({xi}, ψ) = E
i

[∑
j

1

2

∥∥ygt
ij − yψ

(
xi, r

gt
ij

)∥∥2
]
. (1)

With this objective, the model is trained as an auto-
decoder [35], where the scene codes {xi} can be interpreted
as the latent codes, and the plenoptic function can be re-
garded as a decoder in the form of pψ({yj}|x, {rj}) :=∏
j N (yj |yψ(x, rj), I), assuming independent Gaussians.

Challenges in Bridging Generation and Reconstruction
An auto-decoder with trained weightsψ can perform uncon-
ditional generation by decoding latent codes drawn from a
Gaussian prior [38]. However, to ensure continuity in gen-
eration, a low-dimensional latent space and a complex de-
coder is required, which adds to the difficulty in optimizing
the latent code to faithfully reconstruct any given views.

3.2. Latent Diffusion Models

Latent diffusion models (LDM) learn a prior distribution
pφ(x) in the latent space with parameters φ, which enables
the usage of more expressive latent representations, such
as 2D grids for images [54, 41]. For neural field genera-
tion, previous work [2, 32, 13, 47] adopts a two-stage train-
ing scheme, where the auto-decoder is trained first to ob-
tain the per-scene latent xi, which is then treated as real
data to train the LDM. The LDM injects Gaussian pertur-
bation ε ∼ N (0, I) into the code xi, yielding a noisy code
x

(t)
i := α(t)xi+σ

(t)ε at diffusion time step t, under empiri-
cal noise schedule functionsα(t), σ(t). A denoising network
with trainable weights φ is then tasked with removing the
noise from x

(t)
i to predict a denoised code x̂i. The network

is typically trained with a simplified L2 denoising loss:

Ldiff(φ) = E
i,t,ε

[
1

2
w(t)

∥∥∥x̂φ(x(t)
i , t

)
− xi

∥∥∥2
]
, (2)

where t ∼ U(0, T), w(t) is an empirical time dependent
weighting function, and x̂φ(x

(t)
i , t) formulates the time-

conditioned denoising network.

Unconditional/Guided Sampling With trained weights
φ, one can sample from the diffusion prior pψ(x) using a
variety of solvers (e.g., DDIM [50]) that recursively denoise
x(t), starting from random Gaussian noise x(T), until reach-
ing the denoised state x(0). Moreover, the sampling process
can be guided by the gradients of the rendering loss against
known observations, allowing 3D reconstruction from im-
ages at test time [32].

Two-stage w/o TV Two-stage w/ TV Single-stage

·

Figure 2. Visualization of the scene code xXZ at XZ plane. Left
column: Two-stage training without TV regularization induces
noise and fails in 3-view reconstruction. Mid column: TV reg-
ularization imposes smoothing prior at the cost of textural details
(top), yet still struggles to cope with sparse views (bottom). Right
column: Our single-stage training encourages smooth yet detailed
latents and allows for training with sparse views.

Limitations of Two-Stage Training for 3D Tasks While
LDMs with 2D image VAEs are typically trained in two
stages [54, 41], training LDMs with NeRF auto-decoders
poses an unprecedented challenge. An expressive latent
code is underdetermined when obtained via rendering-
based optimization, leading to noisy patterns that distract
denoising networks (top-left of Fig. 2). Additionally, re-
constructing NeRFs from sparse views without a learned
prior is exceptionally difficult (bottom-left of Fig. 2), limit-
ing training to dense-views settings.

4. Proposed Method
To build a holistic model that unifies 3D generation and

reconstruction, we propose SSDNeRF, a framework that
conjoins the expressive triplane NeRF auto-decoder with a
triplane latent diffusion model. Fig. 3 provides an overview
of the model. In the following subsections, we elaborate on
how training and testing are performed in detail.

4.1. Single-Stage Diffusion NeRF Training

An auto-decoder can be regarded as a type of VAE that
uses a lookup table encoder instead of the typical neural
network encoder. As such, the training objective can be de-
rived in a similar way as for VAEs. With NeRF decoder
pψ({yj}|x, {rj}) and diffusion latent prior pφ(x), the train-
ing objective is to minimize variational upper bound on the
negative log-likelihood of observed data {ygt

ij , r
gt
ij } [26, 39,

54]. In this paper, a simplified training loss is derived by
ignoring the uncertainty (variance) in latent codes:

L = E
i
[− log pψ({ygt

ij }|xi, {r
gt
ij })︸ ︷︷ ︸

rendering loss Lrend

]+E
i
[− log pφ(xi)]︸ ︷︷ ︸

prior term

, (3)

where the scene codes {xi}, prior parameters φ, and de-
coder parameters ψ are jointly optimized in a single training
stage. This loss function consists of the rendering lossLrend

in Eq. (1) and a diffusion prior term in the form of negative

3

NeRF Decoder 𝑝𝑝𝜓𝜓 𝑦𝑦𝑗𝑗 𝑥𝑥, 𝑟𝑟𝑗𝑗

Linear, Sigmoid

�𝑥𝑥𝜙𝜙 𝑥𝑥𝑖𝑖
𝑡𝑡 , 𝑡𝑡

ℒdiff

Gaussian diffusion

scene code
𝑥𝑥𝑖𝑖 ∈ ℝ3×6×128×128

denoised code
�𝑥𝑥𝑖𝑖 ∈ ℝ3×6×128×128

noisy code
𝑥𝑥𝑖𝑖

(𝑡𝑡) ∈ ℝ3×6×128×128

Denoising

U-Net

position feat.
ℝ3×6

ℝ64Linear

SH encoding ℝ64

Linear

Linear, Exp

SiLU

SiLU

Ray integral 𝑦𝑦𝜓𝜓 𝑥𝑥𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑗𝑗
gt

pixel RGB
𝑦𝑦𝑖𝑖𝑗𝑗 ∈ ℝ+

3
observation
𝑦𝑦𝑖𝑖𝑗𝑗
gt ∈ ℝ+

3ℒrend

Diffusion Prior 𝑝𝑝𝜙𝜙 𝑥𝑥 𝑖𝑖: scene index
𝑗𝑗: ray (pixel) index

Figure 3. An overview of SSDNeRF framework with a triplane NeRF representation. During training, we feed a batch of observations in
the format of RGB values ygt

ij and rays rgt
ij . The corresponding scene code xi is randomly initialized and optimized by minimizing the

rendering loss Lrend and the diffusion loss Ldiff, and model parameters φ, ψ are also updated along the way.

log-likelihood (NLL). Following [54, 57, 51], we replace
the diffusion NLL with its approximate upper bound Ldiff

in Eq. (2). This technique is also called score distillation in
[36]. Adding empirical weighting factors, we finalize our
training objective as:

L = λrendLrend({xi}, ψ) + λdiffLdiff({xi}, φ). (4)

Single-stage training constrains scene codes {xi} with
both terms in the loss function, allowing the learned prior
to complete the parts unseen to rendering. This is particu-
larly beneficial to training on sparse-view data, where the
expressive triplane codes are severely underdetermined.

Balancing Rendering and Prior Weights The render-to-
prior weight ratio λrend/λdiff is crucial to single-stage train-
ing. To make hyperparameters more generalizable to dif-
ferent settings, we design an empirical weighting mecha-
nism, in which the diffusion loss is normalized by the expo-
nential moving average (EMA) of the scene codes’ Frobe-
nius norms, expressed as λdiff := cdiff/EMA

(
‖xi‖2F

)
with

a constant scale cdiff , and the rendering weight is deter-
mined by the number of views available Nv, expressed as
λrend := crend(1−e−0.1Nv)/Nv with a constant scale crend.
Intuitively,Nv-based weighting is a calibration to the ray in-
dependence assumption in the decoder pψ({yj}|x, {rj}) :=∏
j N (yj |yψ(x, rj), I), preventing the rendering loss from

scaling linearly with the number of rays.

Comparison to Two-Stage Generative Neural Fields
Previous two-stage methods [2, 13, 32, 47] ignore the prior
term λdiffLdiff during the first stage of training the auto-
decoders. This can be seen as setting the render-to-prior
weight ratio λrend/λdiff to infinity, resulting in biased and
noisy scene codes xi. Shue et al. [47] partially mitigate this
issue by imposing total variation (TV) regularization on tri-
plane scene codes to enforce a smoothing prior, which re-
sembles the diffusion models’ inductive bias (mid column
of Fig. 2). Control3Diff [17] proposes to learn a conditional
diffusion model on data generated by a 3D GAN pretrained

on single-view images. In contrast, our single-stage training
aims to directly incorporate the diffusion prior to promote
end-to-end coherence.

4.2. Image-Guided Sampling and Finetuning

To achieve generalizable test-time NeRF reconstruction
that covers a wide spectrum from single-view to dense ob-
servations, we propose performing image-guided sampling
and then finetuning the sampled codes considering both the
diffusion prior and rendering likelihood.

Following the reconstruction-guided sampling method
by Ho et al. [23], we compute the approximated rendering
gradients g w.r.t. a noisy code x(t), defined as:

g ←∇x(t)λrend

∑
j

1

2

(
α(t)

σ(t)

)2ω∥∥∥ygt
j − yψ

(̂
xφ(x

(t), t), rgt
j

)∥∥∥2

,

(5)
where

(
α(t)/σ(t)

)2ω
is an additional weighting factor based

on signal-to-noise ratio (SNR), with hyperparameter ω cho-
sen to be 0.5 or 0.25 in our work. The guidance gradients
g are then combined with unconditional score prediction,
expressed as a correction to the denoising output x̂:

x̂← x̂− λgd
σ(t)2

α(t)
g (6)

with guidance scale λgd. We adopt the predictor-corrector
sampler [52] to solve x(0) by alternating between a DDIM
step [50] and multiple Langevin correction steps.

We observe that the reconstruction guidance alone can-
not strictly enforce rendering constraints towards faithful
reconstruction. To address this issue, we reuse the train-
ing objective in Eq. (4) to finetune the sampled scene code
x, while freezing the diffusion and decoder parameters:

min
x
λrendLrend(x) + λ′diffLdiff(x), (7)

where λ′diff is the test-time prior weight, which we find
should be lower than the training weight λdiff for best re-
sults, as the prior learned from the training dataset is less

4

reliable when transferred to a different testing dataset. We
use Adam [25] to optimize the code x for finetuning.

Comparison to Previous NeRF Finetuning Approaches
While finetuning with rendering loss is common in view-
conditioned NeRF regression methods [8, 60], our finetun-
ing approach differs in the use of diffusion prior loss on the
3D scene code, which significantly enhances generalization
to novel views, as demonstrated in § 5.3.

4.3. Implementation Details

This subsection briefly describes some important techni-
cal details. More details can be found in the supplementary.

Prior Gradient Caching Triplane NeRF reconstruction
requires at least hundreds of optimization iterations on each
scene code xi. A problem with the single-stage training
loss in Eq. (4) is that the diffusion loss Ldiff requires much
longer time to evaluate than the native NeRF rendering loss
Lrend, reducing overall efficiency. To accelerate reconstruc-
tion in both training and test-time finetuning, we introduce
a technique called prior gradient caching, which caches the
back-propagated prior gradients ∇xλdiffLdiff for re-use in
multiple Adam steps, while refreshing the rendering gradi-
ents ∇xλrendLrend in each of the steps, which allows for
fewer diffusion passes than rendering. A training pseudo-
code is given in Algorithm 1.

Denoising Parameterization and Weighting The de-
noising model x̂φ(x(t), t) is implemented as a U-Net [42] as
in DDPM [22], with a total of 122M parameters. Its input
and output are noisy and denoised triplane features, respec-
tively, with channels of all three planes stacked together.
For the prediction format, we adopt the velocity parameter-
ization v̂φ(x(t), t) in [43], such that x̂ = α(t)x(t) − σ(t)v̂.
Regarding the weighting function w(t) in the diffusion loss
in Eq. (2), LSGM [54] employs two different mechanisms
for optimizing latents xi and diffusion weights φ, respec-
tively, which we find unstable with NeRF auto-decoders.
Instead, we observe that the SNR-based weighting w(t) =(
α(t)/σ(t)

)2ω
used in Eq. (5) works well with our models.

5. Experiments
5.1. Datasets

We conduct experiments on the ShapeNet SRN [6, 48]
and Amazon Berkeley Objects (ABO) Tables [9] datasets
for benchmarking with previous work. The SRN dataset
provides single-object scenes in two categories, i.e., Cars
and Chairs, with a train/test split of 2458/703 for Cars and
4612/1317 for Chairs. Each train scene has 50 random
views from a sphere and each test scene has 251 spiral
views from the upper hemisphere. The ABO Tables dataset
provides a train/test split of 1520/156 table scenes, where
each scene has 91 views from the upper hemisphere. For

Algorithm 1: Single-stage diffusion NeRF training

Input: {ygt
ij , r

gt
ij }

1 Initialize {xi}, φ, ψ
2 for kout := 1 · · ·Kout do // outer loop of Kout iterations
3 Sample a batch of scenes i ∈ Bsc

4 gφ, g
diff
x ← ∇φ,{xi}Bsc

λdiffLdiff // diffusion grad
5 φ← φ−Adam(gφ)
6 for kin := 1 · · ·Kin do // inner loop of Kin iterations
7 Sample a batch of rays j ∈ Bray

8 grend
x ← ∇{xi}Bsc

λrendLrend // rendering grad
9 gx ← grend

x + gdiff
x // add cached prior grad

10 {xi}Bsc ← {xi}Bsc −Adam(gx)
11 if kin = Kin then // last inner iteration
12 gψ ← ∇ψλrendLrend

13 ψ ← ψ −Adam(gψ)

Method Type
Cars Tables

FID↓ KID/10−3↓ FID↓ KID/10−3↓

Functa [13] LDM 80.3 - - -
π-GAN [4] GAN 36.7† - 41.67§ 13.82§
EG3D [5] GAN 10.46* 4.90* 31.18§ 11.67§
DiffRF [32] LDM - - 27.06 10.03

Ours (2-stage) LDM 16.33±0.93 6.38±0.41 - -
Ours (1-stage) LDM 11.08±1.11 3.47±0.23 14.27±0.66 4.08±0.33

Table 1. Unconditional generation results on SRN Cars and ABO
Tables. † denotes results reported by Functa [13]. § denotes results
reported by DiffRF [32]. * denotes results reproduced by us using
the official public code with a bugfix.7

both datasets, we use the provided renderings (resized to
128×128) with ground truth poses for training and testing.

5.2. Unconditional Generation

In this section, we conduct evaluations for unconditional
generation using the SRN Cars and ABO Tables dataset.
The Cars dataset poses a challenge in generating sharp and
intricate textures, whereas the Tables dataset comprises of
diverse geometries with realistic materials. Models are
trained on all images of the training set for 1M iterations.

Evaluation Protocol and Metrics For SRN Cars, follow-
ing Functa [13], we sample 704 scenes from the diffusion
model, and render each scene using the fixed 251 cam-
era poses from the test set. For ABO Tables, following
DiffRF [32], we sample 1000 scenes and render each scene
with 10 random cameras. We adopt standard generation
metrics including Fréchet Inception Distance (FID) [20]
and Kernel Inception Distance (KID) [3]. The metrics’ ref-
erence sets are all images in the test set for SRN Cars and all

7https://github.com/nvlabs/eg3d/issues/67

5

https://github.com/nvlabs/eg3d/issues/67

Figure 4. Qualitative comparison between unconditional generative models trained on ABO Tables and SRN Cars.

Method
Cars 1-view Cars 2-view Chairs 1-view Chairs 2-view

PSNR↑ SSIM↑LPIPS↓ FID↓ PSNR↑ SSIM↑LPIPS↓ FID↓ PSNR↑ SSIM↑LPIPS↓ FID↓ PSNR↑ SSIM↑LPIPS↓ FID↓

3DiM [56] 21.01 0.57 - 8.99 - - - - 17.05 0.53 - 6.57 - - - -
PixelNeRF [58] 23.17 0.90 0.146‡ 59.24† 25.66 0.94 - - 23.72 0.91 0.128‡ 38.49† 26.20 0.94 - -
SRN [48] 22.25§ 0.89§ 0.129‡ 41.21† 24.84§ 0.92§ - - 22.89§ 0.89§ 0.104‡ 26.51† 24.48§ 0.92§ - -
CodeNeRF [24] 23.80 0.91 0.118* 56.34* 25.71 0.93 0.108* 56.13* 23.66 0.90 0.106* 31.65* 25.63 0.91 0.097* 29.90*
VisionNeRF [28] 22.88 0.91 0.084 21.31† - - - - 24.48 0.93 0.077 10.05† - - - -

Ours (1-stage) 23.52 0.91 0.078 16.39 26.49 0.94 0.054 10.66 24.01 0.92 0.071 15.50 27.02 0.95 0.057 15.03

Table 2. Single-view and two-view reconstruction results on SRN Cars and Chairs. For consistency with prior work, we use view #64 of
the test scene as single-view input and view #64 and #104 as two-view input. † denotes results reported by 3DiM [56]. ‡ denotes results
reported by VisionNeRF [28], § denotes results reported by PixelNeRF [24], * denotes results reproduced by us using the official code.
- indicates results are unavailable.

images in the entire dataset for ABO Tables, respectively.

Comparison to the State of the Art As shown in Table 1,
on SRN Cars, SSDNeRF (1-stage) outperforms EG3D in
KID (a more suitable measure for small datasets) by a
clear margin. Meanwhile, its FID is drastically better than
Functa, which uses an LDM but with low dimensional la-
tent codes. On ABO Tables, SSDNeRF shows significantly
better performance than EG3D and DiffRF.

Single- vs. Two-stage On SRN Cars, we compare the pro-
posed single-stage training against two-stage training with
tuned TV regularization using the same model architec-
ture. The results in Table 1 indicate substantial advantage
of single-stage training (KID/10−3 3.47 vs. 6.38).

Qualitative Results As shown in Fig. 4, SSDNeRF gen-
erates more regular geometries than the slightly skewed and
distorted shapes by EG3D [5]. Compared to DiffRF [32],
our method produces sharp details and reflective materials,

thanks to our more expressive model with latents of higher
spatial resolution and view-dependent NeRF decoder.

5.3. Sparse-View NeRF Reconstruction

This section presents experiments on 3D reconstruction
from sparse-view images of unseen objects in SRN Cars
and Chairs test sets. The Cars dataset presents the challenge
of recovering distinct textures, while the Chairs dataset re-
quires accurate reconstruction of diverse shapes. Models
are trained on all images of the training set for 80K itera-
tions, as we find that longer schedule leads to decaying per-
formance in reconstructing unseen objects. This behaviour
is in accordance with the interpolation results in § 5.5.

Evaluation Protocol and Metrics We use the evaluation
protocol and metrics in PixelNeRF [58]. Given input im-
ages sampled from each test scene, we obtain the triplane
scene code via guidance-finetuning and evaluate novel
view synthesis quality with respect to the unseen images.

6

Input view #64

Target view #60 LPIPS=0.199 LPIPS=0.093

Target view #100 LPIPS=0.166

LPIPS=0.086

LPIPS=0.187

LPIPS=0.099

LPIPS=0.173LPIPS=0.224

Input view #64

Target view #60 LPIPS=0.079 LPIPS=0.094

Target view #100 LPIPS=0.141

LPIPS=0.020

LPIPS=0.058

LPIPS=0.030

LPIPS=0.045

LPIPS=0.062LPIPS=0.106

Input view #64

LPIPS=0.028LPIPS=0.077LPIPS=0.159

LPIPS=0.163 LPIPS=0.140

Target view #60

Target view #100 LPIPS=0.110LPIPS=0.120

Input view #64

Target view #60 LPIPS=0.133 LPIPS=0.031

Target view #100 LPIPS=0.087

LPIPS=0.084

LPIPS=0.123

LPIPS=0.140

LPIPS=0.145LPIPS=0.155

Input view #64

Target view #60 LPIPS=0.104 LPIPS=0.034

Target view #100 LPIPS=0.128

LPIPS=0.026

LPIPS=0.092

LPIPS=0.021

LPIPS=0.079

LPIPS=0.095LPIPS=0.130

Input view #64

LPIPS=0.005LPIPS=0.027LPIPS=0.017

LPIPS=0.026 LPIPS=0.056

Target view #60

Target view #100 LPIPS=0.022LPIPS=0.032

(a) SRN Cars (b) SRN Chairs

SSDNeRF w/o
finetuning

VisionNeRF SSDNeRFGround truth CodeNeRF Extracted mesh
from SSDNeRF

SSDNeRF w/o
finetuning

VisionNeRF SSDNeRFGround truth CodeNeRF Extracted mesh
from SSDNeRF

Figure 5. Qualitative comparison of single-view reconstruction methods on unseen test objects in SRN Cars and Chairs.

The image quality metrics include average peak signal-to-
noise-ratio (PSNR), structural similarity (SSIM) [55], and
Learned Perceptual Image Patch Similarity (LPIPS) [59].
In addition, we evaluate the FID between all synthesized
images and ground truth images as in 3DiM [56].

Comparison to the State of the Art Table 2 com-
pares SSDNeRF against previous approaches in single-view
and two-view reconstruction settings. Overall, SSDNeRF
reaches the best LPIPS of all tasks, indicating the best per-
ceptual fidelity. In contrast, 3DiM generates high qual-
ity images (best FID) but with the lowest fidelity to the
ground truth (lowest PSNR); CodeNeRF reports the best
PSNR on single-view Cars, but its limited expressiveness
leads to blurry outputs (Fig. 5) and less competitive LPIPS
and FID; VisionNeRF achieves a balanced performance on
all single-view metrics, but may struggle to generate textu-
ral details on the unseen side of cars (e.g., the other side of
the ambulance in Fig. 5). Moreover, SSDNeRF exhibits a
clear advantage in two-view reconstruction, achieving the
best performance on all relevant metrics.

Single- vs. Two-stage As demonstrated in Table 3, the
model trained in a single stage (A0) outperforms the same
architecture trained in two stages with TV regularization
(A1) in all metrics of single-view reconstruction.

Ablation Studies on Test-Time Finetuning As shown in
Table 3, we evaluate the effectiveness of test-time finetun-
ing and the contribution of the learned diffusion prior with
two ablation experiments: (A2) removing the diffusion loss
during finetuning and using only the rendering loss, and
(A3) omitting the finetuning process entirely. The results
indicate that finetuning with single-view rendering loss pro-
vides only marginal improvements over guided sampling
(A2 vs. A3), while the learned diffusion prior significantly

ID Training Finetuning PSNR↑ SSIM↑ LPIPS↓ FID↓

A0 1-stage Rend + Diff 23.52 0.913 0.078 16.39
A1 2-stage Rend + Diff 22.83 0.906 0.090 20.97
A2 1-stage Rend 23.13 0.907 0.088 27.93
A3 1-stage None 23.07 0.905 0.092 30.95

Table 3. Ablation results on single-view reconstruction of SRN
Cars.

0.00

0.04

0.08

0.12

0.16

0.20

0 8 16 24 32

LP
IP

S

Number of views

Triplane w/ TV

Triplane w/o TV

CodeNeRF

SSDNeRF

Figure 6. LPIPS scores (lower is better) of novel view synthesis
from sparse-to-dense inputs, evaluated on SRN Cars test set. The
triplane baselines adopt mean initialization for better performance.

boosts the LPIPS and FID scores (A0 vs. A2), highlight-
ing its importance in recovering sharp and distinct contents.
Moreover, the qualitative results in Fig. 5 reveal that views
with higher overlap to the input view benefit the most from
finetuning, meeting our expectation that finetuning helps
faithfully reconstruct the exact observations.

Sparse-to-Dense Reconstruction To validate that SSD-
NeRF seamlessly bridges sparse- and dense-view NeRF re-
construction, we evaluate its novel view synthesis perfor-
mance with the number of input views varying from 1 to
32. We compare our model to the triplane NeRF baseline
trained as an auto-decoder with optional TV regularization
instead of diffusion prior. Meanwhile, we also evaluate Co-
deNeRF [24], an auto-decoder with 256-d latent codes. The
results in Fig. 6 show that SSDNeRF excels in all settings,

7

especially in 1 to 4 views. In contrast, CodeNeRF is outper-
formed by vanilla triplane NeRF with more views.

5.4. Training SSDNeRF on Sparse-View Dataset

In this section, we train SSDNeRF on a sparse-view sub-
set of the full SRN Cars training set, in which a fixed set
of only three views are randomly picked from each scene.
Note that a reasonable decline in performance compared
to dense-view training is expected as the whole training
dataset has been reduced to 6% of its original size.

Unconditional Generation We adopt a training trick
that resets the triplane codes to their mean value halfway
through training. This helps to prevent the model from get-
ting stuck in a local minimum that overfits geometric arti-
facts. We also double the length of the training schedule
accordingly. The model achieves a decent FID of 19.04±1.10

and a KID/10−3 of 8.28±0.60. Results are visualized in Fig. 7.

Single-View Reconstruction We adopt the same training
strategy as in § 5.3. With our guidance-finetuning approach,
the model achieves an LPIPS score of 0.106, even outper-
forming most of the previous methods in Table 2 that use
the full training set.

Comparison to TV Regularization Fig. 8 (b) shows the
RGB images and geometries represented by the scene latent
codes learned from three views during training. By compar-
ison, vanilla triplane auto-decoder with TV regularization
(Fig. 8 (a)) often fails to reconstruct a scene from sparse
views, leading to severe geometric artifacts. As a result,
previously it has been infeasible to train two-stage models
with expressive latents on sparse-view data.

5.5. NeRF Interpolation

Following DDIM [50], we can sample two initial val-
ues x(T) ∼ N (0, I), interpolate them using spherical linear
interpolation [46], and then use the deterministic solver to
obtain interpolated samples. However, as noted by [37, 40],
standard Gaussian diffusion models often result in non-
smooth interpolation. In SSDNeRF (with results shown
in Fig. 9), we find that the model (a) trained with early
stopping for sparse-view reconstruction produces reason-
ably smooth transitions between samples, while the model
(b) trained with a longer schedule for unconditional genera-
tion produces distinct yet discontinuous samples. This sug-
gests that early stopping preserves a smoother prior, leading
to better generalization for sparse-view reconstruction.

6. Conclusion
In this paper, we propose SSDNeRF, which combines the

diffusion model and NeRF representation through a novel
single-stage training paradigm with an end-to-end justifi-
able loss. Notably, it overcomes the limitations in previous
work where implicit neural fields must be obtained from

Figure 7. Images generated by SSDNeRF trained on a 3-view sub-
set of SRN Cars training set.

(a) Auto-decoder training w/ TV (b) 1-stage joint training with diffusion

Figure 8. Qualitative comparison between scene codes learned
from 3 views by (a) triplane auto-decoder with TV regularization
vs. (b) single-stage diffusion NeRF.

Figure 9. Interpolation between the leftmost and rightmost sam-
ples using DDIM [50].

dense observations first, before training the diffusion mod-
els to learn their manifold. With strong performance on
multiple benchmarks, SSDNeRF demonstrates a significant
advancement towards a unified framework for general 3D
content manipulation.

Limitations and Future Work Currently, our method re-
lies on ground truth camera parameters during both train-
ing and testing. Incorporating camera poses as a part of
the learnable graph, or making the 3D priors transform-
invariant, is a crucial future direction. Additionally, the
diffusion prior can become discontinuous with prolonged
training, which affects generalization in sparse-view recon-
struction. Although an early stopping scheme is temporarily
used, a better model architecture or a larger training dataset
may be able to address this problem fundamentally.

Acknowledgements We thank Norman Müller for shar-
ing the baseline results on ABO Tables. Hansheng Chen
and Wei Tian acknowledge the funding by the National
Natural Science Foundation of China (No. 52002285),
the Shanghai Science and Technology Commission
(No. 21ZR1467400), the original research project of Tongji
University (No. 22120220593), and the National Key R&D
Program of China (No. 2021YFB2501104).

8

References
[1] Titas Anciukevicius, Zexiang Xu, Matthew Fisher, Paul Hen-

derson, Hakan Bilen, Niloy J. Mitra, and Paul Guerrero.
RenderDiffusion: Image diffusion for 3D reconstruction, in-
painting and generation. In CVPR, 2023. 2

[2] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent
Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, Afshin
Dehghan, and Josh Susskind. Gaudi: A neural architect for
immersive 3d scene generation. In NeurIPS, 2022. 2, 3, 4

[3] Mikołaj Bińkowski, Danica J. Sutherland, Michael Arbel,
and Arthur Gretton. Demystifying mmd gans. In ICLR,
2018. 5

[4] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and
Gordon Wetzstein. pi-gan: Periodic implicit generative ad-
versarial networks for 3d-aware image synthesis. In CVPR,
2021. 2, 5

[5] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In CVPR, 2022. 1, 2, 5, 6

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 5

[7] Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su,
and Andreas Geiger. Factor fields: A unified framework for
neural fields and beyond, 2023. 2, 3

[8] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In ICCV, pages 14124–14133, 2021. 1, 2, 5

[9] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang,
Tomas F Yago Vicente, Thomas Dideriksen, Himanshu
Arora, Matthieu Guillaumin, and Jitendra Malik. Abo:
Dataset and benchmarks for real-world 3d object understand-
ing. In CVPR, 2022. 5

[10] MMGeneration Contributors. MMGeneration: Openmm-
lab generative model toolbox and benchmark. https:
//github.com/open-mmlab/mmgeneration,
2021. 11

[11] Congyue Deng, Chiyu Jiang, Charles R Qi, Xinchen Yan,
Yin Zhou, Leonidas Guibas, Dragomir Anguelov, et al.
Nerdi: Single-view nerf synthesis with language-guided dif-
fusion as general image priors. In CVPR, 2023. 2

[12] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
ICCV, 2021. 2

[13] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami,
Danilo Jimenez Rezende, and Dan Rosenbaum. From data

to functa: Your data point is a function and you can treat it
like one. In ICML, 2022. 2, 3, 4, 5

[14] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. In NeurIPS, 2022. 1, 2

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 13

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 2

[17] Jiatao Gu, Qingzhe Gao, Shuangfei Zhai, Baoquan Chen,
Lingjie Liu, and Josh Susskind. Learning controllable 3d
diffusion models from single-view images, 2023. 4

[18] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In ICLR, 2022. 1, 2

[19] Jiatao Gu, Alex Trevithick, Kai-En Lin, Josh Susskind,
Christian Theobalt, Lingjie Liu, and Ravi Ramamoorthi.
Nerfdiff: Single-image view synthesis with nerf-guided dis-
tillation from 3d-aware diffusion, 2023. 2

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 5

[21] Jonas Heylen, Mark De Wolf, Bruno Dawagne, Marc Proes-
mans, Luc Van Gool, Wim Abbeloos, Hazem Abdelkawy,
and Daniel Olmeda Reino. Monocinis: Camera independent
monocular 3d object detection using instance segmentation.
In ICCV Workshops, 2021. 13

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 2, 5, 11

[23] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. In NeurIPS, 2022. 4

[24] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In ICCV,
pages 12949–12958, 2021. 2, 6, 7, 13

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 5, 11

[26] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. In ICLR, 2014. 2, 3

[27] Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas
Geiger. Towards unsupervised learning of generative models
for 3d controllable image synthesis. In CVPR, 2020. 2

[28] Kai-En Lin, Lin Yen-Chen, Wei-Sheng Lai, Tsung-Yi Lin,
Yi-Chang Shih, and Ravi Ramamoorthi. Vision transformer
for nerf-based view synthesis from a single input image. In
WACV, 2023. 1, 2, 6, 13

[29] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In CVPR,
pages 11461–11471, 2022. 2

[30] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided

9

https://github.com/open-mmlab/mmgeneration
https://github.com/open-mmlab/mmgeneration

image synthesis and editing with stochastic differential equa-
tions. In ICLR, 2022. 2

[31] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[32] Norman Müller, , Yawar Siddiqui, Lorenzo Porzi, Samuel
Rota Bulò, Peter Kontschieder, and Matthias Nießner. Diffrf:
Rendering-guided 3d radiance field diffusion. In CVPR,
2023. 2, 3, 4, 5, 6, 12

[33] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. Hologan: Unsupervised
learning of 3d representations from natural images. In ICCV,
2019. 2

[34] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In CVPR, 2021. 1, 2

[35] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 2, 3, 12

[36] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. In ICLR,
2023. 4

[37] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizad-
wongsa, and Supasorn Suwajanakorn. Diffusion autoen-
coders: Toward a meaningful and decodable representation.
In CVPR, 2022. 8

[38] Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry La-
gun, and Andrea Tagliasacchi. Lolnerf: Learn from one look.
In CVPR, 2022. 2, 3

[39] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In ICML, pages 1278–1286,
2014. 3

[40] Severi Rissanen, Markus Heinonen, and Arno Solin. Gener-
ative modelling with inverse heat dissipation. In ICLR, 2023.
8

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), pages 234–241, 2015. 5

[43] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In ICLR, 2022. 5, 11

[44] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In NeurIPS, 2020. 2

[45] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,
and Andreas Geiger. Voxgraf: Fast 3d-aware image synthesis
with sparse voxel grids. In NeurIPS, 2022. 2

[46] Ken Shoemake. Animating rotation with quaternion curves.
In Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH), pages 245–254, 1985. 8

[47] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. In CVPR, 2023. 2, 3, 4, 12

[48] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In NeurIPS,
2019. 2, 5, 6, 17

[49] Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter
Wonka. Epigraf: Rethinking training of 3d gans. In NeurIPS,
2022. 2

[50] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 2, 3, 4, 8

[51] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon.
Maximum likelihood training of score-based diffusion mod-
els. In NeurIPS, 2021. 4

[52] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In ICLR, 2021. 4

[53] Jiaxiang Tang. Torch-ngp: a pytorch implementation
of instant-ngp. https://github.com/ashawkey/
torch-ngp, 2022. 11

[54] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
generative modeling in latent space. In NeurIPS, 2021. 2, 3,
4, 5

[55] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE TIP, 13(4):600–612, 2004. 7

[56] Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models. In
ICLR, 2023. 2, 6, 7

[57] Antoine Wehenkel and Gilles Louppe. Diffusion priors in
variational autoencoders. In ICML Workshops, 2021. 4

[58] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 1, 2, 6

[59] Richard Zhang, Phillip Isola, Alexei Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 7

[60] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and
Zexiang Xu. Nerfusion: Fusing radiance fields for large-
scale scene reconstruction. In CVPR, 2022. 2, 5

[61] Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Dis-
tilling view-conditioned diffusion for 3d reconstruction. In
CVPR, 2023. 2

10

https://github.com/ashawkey/torch-ngp
https://github.com/ashawkey/torch-ngp

A. Details on Batch-Wise Rendering Loss
During single-stage training and test-time reconstruc-

tion, we randomly sample a batch of rays Bray from all
available observations for each rendering pass. The actual
rendering loss needs to be rescaled to account for the batch
size |Bray|.

For single-stage training and test-time finetuning based
on Adam [25], we rescale the rendering loss to keep its over-
all magnitude invariant to the batch size |Bray|:

Lrend({xi}, ψ) = E
i

[
Nrayi

|Bray|
∑

j∈Bray

1

2

∥∥ygt
ij − yψ

(
xi, r

gt
ij

)∥∥2
]
,

(8)
where Nrayi is the total number of observed rays of the i-th
scene.

For test-time gradient guidance, however, we treat the
sampled batch Bray as if it constitutes the full observation
set. Thus, the gradients originally defined in Eq. (5) are
actually calculated by:

g ←∇x(t)λ
Bray

rend

∑
j∈Bray

1

2

(
α(t)

σ(t)

)2ω∥∥∥ygt
j − yψ

(̂
xφ(x

(t), t), rgt
j

)∥∥∥2

,

(9)
in which the balanced rendering weight λBray

rend := crend(1−
e−0.1N

Bray
v)/N

Bray
v is determined by the batch-effective

number of views NBray
v instead of the number of all avail-

able views Nv, with their relationship defined as:

NBray
v =

|Bray|
Nray

Nv, (10)

where Nray is the total number of observed rays of a test
scene.

B. Implementation and Hyperparameters
B.1. Implementation Details

We implement our models using PyTorch and MMGen-
eration toolkit [10]. Our NeRF renderer is based on a pub-
lic codebase torch-ngp [53], which employs a density-based
grid pruning strategy for efficient real-time rendering.

B.2. Hyperparameters

Table 4 presents the complete list of architec-
ture/training/testing hyperparameters used in our experi-
ments. It is worth noting that we adopt step decay policy
for both the learning rate and number of inner loop itera-
tions Kin during training.

The major difference between unconditional- and
reconstruction-purposed models is the training schedule,
where reconstruction-purposed training stops early at 80K
iterations, as mentioned in the main paper. Other differ-
ences lie in the U-Net dropout rate and latent learning rate,

which may have marginal effects on the reconstruction per-
formance.

Regarding the Langevin correction step in the form of
x(t) ← x(t) − 1

2δσ
(t)ε̂ +

√
δσ(t)ε with step size δ and in-

dependent noise ε ∼ N (0, I), we observe that this tech-
nique is more effective in reconstructing Chairs than Cars.
Therefore, to reduce inference time, Langevin correction is
not used for SRN Cars dataset. Our intuition is that Chairs
dataset exhibits higher variety in geometry, and Langevin
correction helps better explore the latent space by injecting
random noising during sampling.

B.3. Training and Inference Time

We train all our models using two RTX 3090 GPUs,
each processing a batch of 8 scenes. On average, a single
outer training step takes around 0.5 sec, 80K iterations take
around 11 hours, and 1M iterations cost around 6 days.

Under the unconditional generation setting (50 DDIM
steps), sampling a batch of 8 scenes takes 4.63 sec on a sin-
gle RTX 3090 GPU. Under the reconstruction setting with
the same batch size, a single guided DDIM step or Langevin
step takes 0.21 sec, and a single outer finetuning step takes
0.28 sec (whenKin = 4). This sums up to around 23 sec for
reconstructing a batch of 8 Cars (single-view), and 102 sec
for reconstructing a batch of 8 Chairs (single-view) with ad-
ditional Langevin steps. Once the triplane latent codes are
sampled, neural rendering can be performed in real time to
synthesize the output images.

C. Additional Model Details

In the interest of reproducibility, this section provides ad-
ditional details about the models used in our experiments.
These techniques were not discussed in the main paper, be-
cause they are not essential components of the proposed
method, and they seem to have negligible effect on the over-
all results (Table 5). Nevertheless, we have included them
in our implementation to maintain consistency with an ear-
lier version of our codebase where they were found to be
useful at one stage.

C.1. Bounding the Latents via Tanh Mapping

In an earlier version of our implementation of the diffu-
sion model, we use the ε̂ prediction format as in DDPM [22]
instead of the current v̂ format proposed by [43]. To sta-
bilize denoising-based sampling process, the ε̂ format re-
quires clipping the denoised prediction x̂ at each step, which
is suitable for bounded data. This motivated us to bound the
latent code xi element-wise via an additional Tanh layer.

Specifically, let xi := s · tanhxraw
i be the bounded la-

tent code within the interval (−s, s), where xraw
i denotes

a raw, unbounded parameterization of the code. During
single-stage training and test-time finetuning, we perform

11

Unconditional Reconstruction

Cars (full) Cars (3-view) Tables (full) Cars (full) Cars (3-view) Chairs (full)

x shape 3×6×128×128
Latent dimensionality dim (X) 294912
U-Net base channels 128
U-Net channel multiplier 1, 2, 2, 4, 4
U-Net depth 2
U-Net attention resolutions 32, 16, 8
U-Net attention heads 4
U-Net dropout 0.0 0.0 0.0 0.1 0.1 0.1
Diffusion steps 1000
Noise schedule Linear

Scene batch size |Bsc| 16
Ray batch size |Bray| 4096
Rendering weight constant crend 40 × 2−14

Diffusion weight constant cdiff 4
SNR power ω 0.5 0.5 0.5 0.5 0.5 0.25
Outer loop iterations Kout 1M 2M 1M 80K 80K 80K

Inner loop iterations Kin

16, kout ≤ 2K,
4, 2K < kout ≤ 100K,
2, kout > 500K.

{
16, kout ≤ 2K,
2, kout > 2K.

16, kout ≤ 2K,
4, 2K < kout ≤ 100K,
2, kout > 500K.

{
16, kout ≤ 2K,
4, kout > 2K.

{
16, kout ≤ 2K,
2, kout > 2K.

{
16, kout ≤ 2K,
4, kout > 2K.

Latent base learning rate 0.005 0.005 0.003 0.01 0.01 0.01
Decoder base learning rate 0.001 0.001 0.0006 0.001 0.001 0.001
Diffusion base learning rate 0.0001 0.0001 0.00006 0.0001 0.0001 0.0001

Learning rate multiplier
{
1, kout ≤ 500K,
0.5, kout > 500K.

1, kout ≤ 500K,
0.5, 500K < kout ≤ 1M,

1, 1M < kout ≤ 1.5M,

0.5, kout > 1.5M.

{
1, kout ≤ 500K,
0.5, kout > 500K.

1 1 1

Ray batch size |Bray| 16384
DDIM steps 50 50 50 75 75 75
Langevin inner iterations 0 0 0 0 0 5
Langevin step size δ 0.4
Guidance scale λgd - - - 3.2 × 214 0.8 × 214 0.4 × 214

Rendering weight constant crend 40 × 2−14

FT Diffusion weight constant c′diff 1
FT SNR power ω 0.5 0.5 0.5 0.5 0.5 0.25
FT outer loop iterations Kout 0 0 0 Table 6 Table 6 Table 6
FT inner loop iterations Kin Table 6
FT latent base learning rate Table 6
FT learning rate multiplier 0.998kout·Kin+kin

Table 4. Architecture/training/testing hyperparameters. kout, kin correspond to the outer and inner loop iteration indices in Algorithm 1.
214 is the number of pixels per view.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓

SSDNeRF (standard) 23.52 0.913 0.078 16.39
W/o Tanh 23.59 0.913 0.077 16.34
W/o L2 regularization 23.48 0.913 0.077 16.62

Table 5. Single-view reconstruction results on SRN Cars, showing
that Tanh and L2 regularization are likely to be redundant.

optimization on the leaf variable xraw
i in the unbounded

space. During test-time sampling, the denoised prediction
x̂ is thus hard-clipped to [−s, s] as well. We set the scale
hyperparameter s to 2 in all our experiments.

Because our final models have switched to the v̂ predic-
tion format, Tanh mapping is probably no longer helpful, as

shown in Table 5. Future work should remove this redun-
dant component.

C.2. Additional L2 Regularization

L2 latent regularization in auto-decoder training origi-
nates from the assumed Gaussian latent prior [35]. In two-
stage diffusion NeRF [32] or occupancy field [47] models,
L2 regularization helps control the norm of the latent codes
and discourage outlying values with respect to the clipping
during sampling. During single-stage training and test-time
finetuning, we also keep this regularization term in the ac-

12

Nv View indices Kout Kin LR PSNR↑ SSIM↑ LPIPS↓ FID↓

1 64 25 4 0.005 23.52 0.913 0.078 16.39
2 64, 104 50 4 0.01 26.49 0.944 0.054 10.66
4 0, 83, 167, 250 100 4 0.02 28.29 0.955 0.049 11.09
8 0, 36, 71, 107, 143, 179, 214, 250 160 5 0.04 31.26 0.973 0.035 8.54

16 0, 17, 33, 50, 67, 83, 100, 117, 133, 150, 167, 183, 200, 217, 233, 250 200 8 0.08 34.31 0.986 0.018 3.09
32 0, 8, 16, 24, 32, 40, 48, 56, 65, 73, 81, 89, 97, 105, 113, 121,

129, 137, 145, 153, 161, 169, 177, 185, 194, 202, 210, 218, 226, 234, 242, 250 200 8 0.08 35.66 0.989 0.015 2.35

Table 6. Details on sparse-to-dense reconstruction on SRN Cars dataset, including the number of input views Nv and their indices, number
of finetuning outer loop iterations Kout, number of finetuning inner loop iterations Kin, finetuning learning rate of the latent code, and
novel view synthesis evaluation results.

Figure 10. Failure case (a) and (b) in single-view NeRF reconstruction from real images. Sample (c) resolves this issue by reducing the
guidance scale λgd.

tual loss function:

L = λrendLrend({xi}, ψ) + λdiffLdiff({xi}, φ)

+
λreg

dim (X)
E
i

[
‖xi‖2F

]
, (11)

where dim (X) is the latent dimensionality, and the regu-
larization weight λreg is set to 0.003. However, as shown
in Table 5, L2 regularization also seems redundant in SSD-
NeRF.

D. Experiment Details and Additional Results
D.1. Details on Sparse-to-Dense Reconstruction

Table 5 presents more details on the experiment settings,
testing hyperparameters, and evaluation results of sparse-
to-dense reconstruction on SRN Cars dataset.

Overall, we find that more iterations and higher learning
rate are required when finetuning on more input views, but
the learning rate should not exceed the upper bound of 0.08
for stability, and a maximum of 200 outer loop iterations
(totaling 1600 inner loop iterations) are sufficient for dense-
view settings.

D.2. Single-View Reconstruction from Real Images

In this subsection, we provide addition experiments on
single-view NeRF reconstruction from real images, using
the model trained on the synthetic SRN Cars dataset. This
demonstrates the generalization capability of SSDNeRF un-
der substantial domain gap.

Data Preparation We extract images of vehicles from the
KITTI 3D object detection dataset [15], which provides an-

notated 3D bounding boxes of objects in the camera view.
We use the provided ground truth bounding box dimensions
and poses to align the objects in the same world coordinate
system as in SRN Cars dataset. In addition, we leverage
the segmentation masks annotated by Heylen et al. [21] to
remove the background. All images are cropped and re-
sized to 128×128. In real applications, one could also use a
monocular 3D object detector and an instance segmentation
model to obtain these inputs.

Testing Hyperparameters We enable Langevin correc-
tion (5 iterations) to better handle out-of-distribution
scenes, and we adopt a different setting of guidance scale
λgd := 0.4 × 214 and finetuning diffusion weight constant
c′diff := 4.

Qualitative Results and Failure Case We present qual-
itative examples of novel views and extracted meshes in
Figure 11. Apart from that, we have also noticed a fail-
ure case where a large portion of the geometry is missing
(Figure 10 (a)). Nevertheless, this issue can be resolved by
reducing the guidance scale λgd (Figure 10 (c)). Overall,
we observed that a guidance scale that is too large can re-
sult in an unstable sampling process, ultimately leading to
corrupted geometries.

D.3. Addition Qualitative Examples

We show randomly sampled scenes generated by SSD-
NeRF in Figure 12, Figure 13, and Figure 14. For single-
view reconstruction, we compare the novel views predicted
by SSDNeRF to those predicted by CodeNeRF [24] and Vi-
sionNeRF [28] in Figure 15 and Figure 16.

13

Figure 11. Single-view NeRF reconstruction from real images.

14

Figure 12. Uncurated samples generated by SSDNeRF trained on SRN Cars dataset.

15

Figure 13. Uncurated samples generated by SSDNeRF trained on ABO Tables dataset.

16

Figure 14. Uncurated samples generated by SSDNeRF trained on a 3-view subset of SRN Cars. Note that the failure case (right column,
fifth row from the bottom) is caused by the few outlier training samples, in which the objects are not properly aligned in scale and position
due to a data preprocessing issue in SRN Cars [48].

17

Input CodeNeRF VisionNeRF
SSDNeRF
3-v subset

SSDNeRF
w/o finetune SSDNeRF Ground truth

Figure 15. Single-view reconstruction on unseen test objects in SRN Cars.

18

Input CodeNeRF VisionNeRF
SSDNeRF

w/o finetune SSDNeRF Ground truth

Figure 16. Single-view reconstruction on unseen test objects in SRN Chairs.

19

