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Abstract

Diffusion models have demonstrated exceptional capabilities in generating high-
fidelity images but typically suffer from inefficient sampling. Many solver designs
and noise scheduling strategies have been proposed to dramatically improve sam-
pling speeds. In this paper, we introduce a new sampling method that is up to 186%
faster than the current state of the art solver for comparative FID on ImageNet512.
This new sampling method is training-free and uses an ordinary differential equa-
tion (ODE) solver. The key to our method resides in using higher-dimensional
initial noise, allowing to produce more detailed samples with less function eval-
uations from existing pretrained diffusion models. In addition, by design our
solver allows to control the level of detail through a simple hyper-parameter at
no extra computational cost. We present how our approach leverages momen-
tum dynamics by establishing a fundamental equivalence between momentum
diffusion models and conventional diffusion models with respect to their training
paradigms. Moreover, we observe the use of higher-dimensional noise naturally
exhibits characteristics similar to stochastic differential equations (SDEs). Finally,
we demonstrate strong performances on a set of representative pretrained diffusion
models, including EDM, EDM2, and Stable-Diffusion 3, which cover models in
both pixel and latent spaces, as well as class and text conditional settings. The code
is available at https://github.com/apple/ml-tada.

1 Introduction

Diffusion Models (DMs; Song et al. [27]; Ho et al. [14]) and Flow Matching [20, 21] are foundational
techniques in generative modeling, widely recognized for their impressive scalability and capability
to generate high-resolution, high-fidelity images [4, 10, 24]. Both share a common underlying
mathematical structure and generate data by iteratively denoising Gaussian noise through a solver.

Sampling from a diffusion model is typically discretized through a multi-step noise schedule. Denois-
ing Diffusion Probabilistic Models sample new noise at every step resulting in a process interpretable
as discretized solutions of diffusion Stochastic Differential Equations (SDEs). Meanwhile, Denoising
Diffusion Implicit Models only sample initial noise which is reused at every step resulting in a process
interpretable as discretized solutions of Ordinary Differential Equations (ODEs). Both ODE and SDE
solvers should perform similarly since they merely represent different interpretations of the same
Fokker-Planck Partial Differential Equation. In practice, however, ODE solvers tend to yield lower
fidelity results compared to SDE solvers, as confirmed by FID scores in [17]. On the other hand,
SDE solvers require finer steps due to the noise injection at every step, which gets amplified through
discretization.

Generating high-quality images using DMs often necessitates a high number of steps and therefore
a high Number of Function Evaluations (NFEs), substantially increasing computational costs com-
pared to alternative generative approaches such as generative adversarial networks (GANs) [11].
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Figure 1: Here we show the distinctions between conventional diffusion models (left) and momentum
diffusion models (right) during sampling. Leveraging Prop 3.1, we demonstrate that pretrained
diffusion models xθ(·, ·) can be directly applied to propagate the momentum system. Moreover, the
choice of numerical solver remains flexible. See Sec 3.2 for details.

Consequently, a large research effort has been focused on reducing the NFEs to reach a desired level
of sample quality and this is also the focus of our paper. Recent efforts [17, 32] have significantly
improved the efficiency of SDE solvers, achieving compelling results with a moderate number of func-
tion evaluations. Designing training-free faster solvers by leveraging numerical integration techniques
has also received a lot of attention: exponential integrators [15] and multi-step methods [1], and
hybrid combinations of these [22, 23, 33, 34]. Remarkably, faster solvers reach near-optimal quality
with around 30 NFEs and retain acceptable image generation capabilities even with NFE < 10.

To further enhance performance, optimization-based solvers [35, 36] have advanced the capabilities
of the aforementioned methods, achieving strong results with as few as 5 NFEs. In parallel, training-
based dynamical distillation approaches [3, 25, 28, 30] have demonstrated effectiveness in reducing
the number of function evaluations and can similarly benefit from the incorporation of fast solvers.

In this paper, we propose a new sampling method that is 186% faster than the current state of the art
for generating 512x512 ImageNet samples with an FID of 2. Our method is orthogonal to existing
diffusion model sampling techniques, allowing seamless integration with advanced solvers and
classifier-free guidance (CFG) schedules simply by transitioning from standard ODE to momentum
ODE frameworks. The proposed method is based on momentum diffusion models [6] and on the
observation [7] that they can achieve competitive performance with a very low number of function
evaluations. Specifically our paper extends the aforementioned works as follows:

1. We prove the training equivalence between momentum diffusion models [6, 9] and conventional
diffusion models, modulo a transformation of the input variables to the neural network.

2. We propose a new sampling method named Training-free Augmented DynAmics (TADA) that
uses higher-dimensional input noise and yet enables direct reuse of pretrained diffusion models.

3. We observe that our proposed method inherits beneficial SDE properties while utilizing ODE
solvers, enabling both diverse generation and accelerated sampling.

4. We illustrate the superior performance of our approach through extensive experimentation.

2 Preliminary

First, we cover conventional diffusion models and flow matching, we then follow up by introducing
momentum diffusion models and we finish this section with exponential integrators. In the rest of this
paper, we follow the flow matching literature convention for the direction of distribution transport,
e.g. from the prior distribution at time t = 0 to the data distribution at time t = 1.

2.1 Diffusion Models and Flow Matching

In Diffusion Models (DM) and Flow Matching (FM), intermediate states xt ∈ Rd are sampled from
a tractable transition probability conditioned on an initial data point x1 ∼ pdata during training:

xt = µtx1 + σtϵ, ϵ ∼ N (0, Id). (1)
The coefficients µt ∈ R and σt ∈ R differ depending on the specific model parameterization: mean
preserving, variance preserving or variance exploding. Regardless of these differences, the training
objectives across various methods remain identical.
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Figure 2: Demonstration of differences of TADA and probablistic ODE in terms of trajectories. We
apply the same pretrained model with momentum system with same discretization in terms of SNR
and the same initial prior samples. TADA can generate SDE-like property, such as generate different
samples from same initial condition, but the system keeps deterministic ODE which can be solved
more efficiently. See Prop.3.3 for more detail.

For the sake of clarity, we illustrate parameterizing the noise prediction model with a neural network
with learnable weights θ. In this case the objective function can be expressed as:

min
θ
LDM(θ) := Ex1,ϵ,t∥ϵθ(xt, t)− ϵ∥22.

Alternatively, using the linear relationship given by eq.1, we could just as easily parameterize the
data prediction model as xθ(xt, t) := (xt − σtϵθ(xt, t))/µt, or even as a velocity prediction model.

Without loss of generality, we define a force term Fθ : Rd × [0, 1]→ Rd as a linear combination of
the learned noise ϵθ and the state xt, which pushes forward xt from the prior towards the pdata from
t = 0 to t = 1. During sampling, we use this force Fθ to define the following probabilistic flow:

dxt

dt
= atxt + btFθ(xt, t), x0 ∼ N (0, σ2

0Id), (2)

where at ∈ R, and bt ∈ R are time-varying coefficients defined by specific parameterization of Fθ.
For example, for a FM parameterization: Fθ(xt, t) = (xθ(xt, t)− xt)/(1− t), at = 0 and bt = 1.

2.2 Phase Space Momentum Diffusion Model

Several recent studies have explored a more sophisticated diffusion process defined in the phase space
[7, 9]. In this space there are N = 2 noise variables, consequently xt, ϵ ∈ (Rd)2. Owing to the linear
dynamics within this framework—similar to those in conventional diffusion models—the transition
probability can also be derived analytically:

xt = (µt ⊗ Id)x1 + (Lt ⊗ Id)ϵ, LtL
T
t = Σt, ϵ :=

[
ϵ(0), ϵ(1)

]T ∼ N (0, I2d),

where µt ∈ R2 and Σt ∈ R2×2 denote the mean and covariance matrix of the resulting multi-
variable Gaussian distribution. Lt ∈ R2×2 is the noise scaling matrix. The superscript denotes the
i-th variable in the multi-variable setting, while the boldface notation xt represents the aggregation
of variables, i.e., xt = [x

(0)
t , x

(1)
t ]T in this setting.
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Notation: In the rest of this document, we use of the Kronecker product to specify that all the
weights are identical along the data dimension d. For example, the expression (µt ⊗ Id)x1 denotes
the stacking of the scaled versions of x1 by µt

(n), e.g. (µt ⊗ Id)x1 = [µt
(0)x1,µt

(1)x1]
T.

The standard training objective for MDM minimizes the approximation error of ϵ(1):

min
θ
LMDM(θ) := Ex1,ϵ,t∥ϵθ(xt, t)− ϵ(1)∥22 with ϵθ : (Rd)2 × [0, 1]→ Rd (3)

Note: It should be observed that such techniques require training since the function ϵθ takes two data
inputs and cannot reuse pre-trained conventional diffusion models where ϵθ takes only one data input.

Just like for conventional diffusion models, various parameterizations of the learned noise ϵθ remain
viable. In particular, AGM[6] and CLD[9] adopt distinct formulations of Fθ, defined as linear
combinations of ϵθ and xt, specifically constructed to guide x

(0)
t from the prior distribution to the

target data distribution. Consequently, sampling reduces to solving a similar probabilistic flow:

dxt

dt
= (At ⊗ Id)xt + (bt ⊗ Id)Fθ(xt, t), x0 ∼ N (0,Σ0). (4)

where At ∈ R2×2 and bt ∈ R2 denote time-dependent coefficients. Specifically, in the MDM
framework, the function Fθ : (Rd)2 × [0, 1] → Rd accepts an aggregated input of two variables
of dimension d and outputs a single vector of dimension d. The resulting d-dimensional output is
subsequently broadcasted across the N = 2 variables through the coefficient bt, a key distinction
from conventional DM. The explicit formulations for At and bt are detailed in Appendix.E.1.

2.3 Sampling with Exponential Integrators

Once a pretrained diffusion model ϵθ is obtained, the dynamics specified by eq. 2 or 4 can be readily
solved. A variety of advanced training-free fast sampling techniques exist, and many of them rely on
exponential integrators [15] which presents as the form of eq.5:

xt = Φ(t, s)xs +

∫ t

s

Φ(t, τ)bτFθ(xτ , τ)dτ︸ ︷︷ ︸
Approximator Ψ(s,t,xs,Fθ)

. (5)

Where Φ(·, ·) is the transition kernel induced by At. Since the first linear component of the ODE
can be analytically integrated via the transition kernel, the primary challenge lies in accurately
approximating the second nonlinear integration, such as the neural network parameterized function
Fθ over discretized time steps s < t.

To improve the accuracy of approximating the nonlinear integral in the second term, advanced
ODE solvers are employed as approximators Ψ(·, ·, ·, ·) in eq.5. Higher-order single-step methods
such as Heun’s method [12] and multi-step explicit methods like Adams–Bashforth [5] have been
widely adopted in prior works [17, 22, 23, 33], often in conjunction with exponential integrators.
To further enhance accuracy, implicit schemes such as the Adams–Moulton method [2] have also
been introduced [34]. The current state-of-the-art solvers integrate these various techniques, and the
specific combinations along with the resulting algorithms are summarized in Appendix.E.3.

This work, however, is specifically focused on designing the ODE itself. Therefore, our approach is
entirely orthogonal to existing solver methodologies, allowing it to be seamlessly integrated with any
solver type, see fig.1 for explanation and demonstration.

3 Method

We start in Sec.3.1 with a proof for the training equivalence between momentum diffusion models and
conventional diffusion models for any N ≥ 1. This condition is necessary both for the training-free
property of our method as well as for the generalization to arbitrarily large N . We then introduce the
proposed method itself in Sec.3.2. Finally in Sec.3.3, we study the dynamics of the proposed method
and how they tie SDE and ODE formulations.
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Algorithm 1 TADA sampling

Require: discretized times ti ∈ [t0, t1, ...tT ]; ODE Solver as approximator Ψ(·, ·, ·, ·) (see eq.5);
Pretrained DM xθ(·, ·). Transition function: Φ(t, s) = exp

∫ t

s
Aτdτ . Cache Q.

1: xt0 ∼ N (0,Σt0) ▷ draw prior sample
2: for i = 0 to T − 1 do
3: compute µti ,Σti , and rti :=

Σ−1
ti

µti

µT
ti
Σ−1

ti
µti

▷ obtain the reweighting for N variables

4: x̂← xθ

(
(r⊤ti⊗ Id)xti , ti

)
▷ data prediction with pretrained DM

5: Fθ ← N !
x̂−

∑N−1
n=0

x
(n)
ti

n! (1− ti)
n

(1− ti)N
▷Compute force term, see Sec.3.2

6: Ψti ≈
∫ ti+1

ti

Φ(ti+1, τ)bτF (xτ , τ) dτ ▷Approx. nonliear part using existing
solver (with Q if solver is multistep)

7: if Solver is multistep then Q
cache←−−− x̂ ▷ store history

8: xti+1
← Φ(ti+1, ti)xti +Ψti ▷ state update

9: end for
10: return xθ

(
(r⊤tT ⊗ Id)xtT , tT

)
▷ return results with data prediction

3.1 Training equivalence between Momentum Diffusion Models and Diffusion Models

In Momentum Diffusion Model case, typically, neural networks are parameterized with N ∈ {2, 3}
augmented variables as input. This method naively introduce certain problems. While state-of-the-art
diffusion models have developed advanced signal-to-noise ratio (SNR) schedules achieving excellent
results [16, 17, 19], defining an appropriate SNR within momentum systems is challenging. Each
variable in a momentum system inherently has its own SNR and is coupled via a covariance matrix,
complicating the definition and practical usage of SNR. Consequently, this complexity has hindered
progress in momentum-based diffusion modeling. Here, we show that the SNR of the momentum
diffusion model can be characterized as the optimal SNR achievable through a linear combination of
multiple variables, as stated in the following proposition.
Proposition 3.1. The training objective of general Momentum Diffusion Models (MDM) (i.e., eq.3)
can be equivalently reparameterized as:

LMDM(θ) ∝ Ext
||xθ(xt, t)− x1||22 ⇒ x∗

θ(xt, t) = E[x1|xt]

E[x1|xt] = E
[
x1|(rTt ⊗ Id)xt, ϵ

]
= E

[
x1|(rTt ⊗ Id)xt

]
where rt :=

Σ−1
t µt

µT
t Σ

−1
t µt

.

Moreover, the Fθ in eq.4 can be recovered as a linear combination of xθ and xt. Here, µT
t Σ

−1
t µt is

the effective SNR of (rTt ⊗ Id)xt which simply is a weighted linear combination of xt by rt.

Proof. See Appendix.A.

This proposition holds significant implications despite its apparent conceptual simplicity: It demon-
strates that MDM, even when involving multiple input variables to the neural network, can be trained
using a single input constructed as a rt-weighted linear combination of the N input variables. As a
consequence, the training objective becomes equivalent to that of a conventional diffusion model,
addressing debates about potential advantages in training arising from momentum diffusion or trivial
variable augmentations. Importantly, this also allows direct reuse of pretrained conventional diffusion
models within the MDM framework and therefore the training-free property claimed by our method.

3.2 Momentum Diffusion Sampling Methodology

[6] highlighted that MDM can yield promising results with small numbers of function evaluations
(NFE); however, the absolute performance at sufficient NFE lags behind traditional diffusion models,
revealing fundamental training issues. Due to the observation in Prop.3.1, such training issues can be
trivially resolved, or, even more easily, we can simply plug in the pretrained diffusion model.
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Figure 3: Generated samples under varying prior scales are shown, all initialized with the same initial
condition of dynamics in Prop.3.3:y0 := (rT0 ⊗ Id)x0 ≡ ϵ, using an identical time discretization over
the SNR and the same pretrained model with 15 NFEs. It can be observed that the diversity of the
generated results increases proportionally with the standard deviation of the final variable x

(N−1)
0 ,

which is scaled by a factor k: Σ0 = diag(1, 1, ..., k).

Training-free Augmented DynAmics (TADA)

We now present the sampling procedure after plugging the pretrained diffusion model into the system.
Now the input of neural network becomes (rTt ⊗ Id)xt ∈ Rd instead of xt ∈ (Rd)N as is the case in
vanilla MDM with N = 2. Since µT

t Σ
−1
t µt is the effective SNR in the momentum system, one can

simply map it to the time conditioning used in the pretrained model.

We extend the AGM [6] framework to an arbitrary N -variables augmented space. Similarly to Sec.2.2,
we reparameterize the data estimation xθ to the force term Fθ, which drives the dynamics of x(0)

t

toward x
(0)
1 ∼ pdata explicitly. The matrices involved have the closed form:

At =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
0 0 · · · 0 0


N×N

,bt :=


0
0
...
1

 ;Fθ(xt, t) := N !
xθ(r

Txt, t)−
∑N−1

n=0
x
(n)
t

n! (1− t)n

(1− t)N
.

Remark 3.2. When N = 1, this formulation simplifies precisely to vanilla flow matching. When
N = 2, it is essentially same as the deterministic case of AGM[6] but with the added training-free
property that our method carries. Please see Appendix.E.4 for details.

To compute the reweighting term rt, the mean and covariance matrix at time t are required. These
quantities can be obtained by analytically solving the coupled dynamics of the mean µt and covariance
Σt, a standard approach [26] in both conventional DM and MDM. Due to space constraints, the
explicit analytical expressions are presented in Appendix E.2.

3.3 Analysis of Sampling Dynamics

In conventional diffusion models, variations in generative dynamics largely stem from differences
in time discretization schemes, as discussed in [17]; for example, Variance Preserving, Variance
Exploding, and Flow Matching dynamics primarily differ in their time discretization over SNR during
sampling. This naturally raises the question of whether momentum diffusion simply constitutes
another form of time discretization. To address this, we conduct a detailed analysis of variable yt
which is fed into the neural network in Prop.3.3.
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Figure 4: Qualitative comparison with UniPC, varying the NFEs, using the same initial condition and
the same pretrained EDM2 model. More qualitative comparision can be found in Appendix.F.

Proposition 3.3. The dynamics of neural network input yt := (rTt ⊗ Id)xt is given by:

dyt
dt

=

N−1∑
i=0

w
(i)
t ϵ(i)(x

(i)
t )︸ ︷︷ ︸

Pseudo Noise

+αtyt + βtxθ(yt, t).

For the coefficient of wi
t, αt and βt, please refer to Appendix.B.

Proof. See appendix.B.

Remark 3.4. There are two scenarios in which Prop 3.3 degenerates into a mere different time
discretization of the conventional diffusion model, irrespective of the value of N . The first occurs
when N = 1, and the second arises when At is a diagonal matrix, implying that each variable
evolves independently. Further details and proof are provided in Appendix.E.5.

As demonstrated in Prop 3.3, the dynamics of the neural network input yt cannot be expressed
solely as a function of yt; rather, an additional pseudo noise term emerges due to interactions among
variables, endowing the system with SDE properties, even when solving the deterministic ODE in
Eq.4. Notably, we empirically find that, the diversity of samples generated from the same prior can
be explicitly manipulated by scaling the standard deviation of the final variable x(N−1)

0 by a factor of
k, corresponding to the last diagonal entry of the covariance matrix Σ0, as illustrated in fig.3.

4 Experiments

In this section, we evaluate the performance TADA in comparison with a range of ODE and SDE
solvers based on conventional first-order diffusion probabilistic flows. Specifically, we assess diffusion
models such as EDM [17], EDM2 [18], in both pixel and latent spaces on the ImageNet-64 and
ImageNet-512 datasets [8]. Additionally, we evaluate the flow matching model Stable Diffusion
3 [10] in the latent space.

4.1 EDM and EDM2 Experiment

We begin by benchmarking our method against UniPC [34] and DPM-Solver++[23] on both ImageNet-
64 and ImageNet-512, using the EDM[17] and EDM2 [18] frameworks. To ensure fair and competi-
tive evaluation, we conduct comprehensive ablations over all combinations of discretization schemes,
solver variants, and solver orders available in the respective codebases, selecting the best-performing
configurations for comparison. Full ablation results for the baselines are reported in the Supplemen-
tary Material. For our method, TADA , we consistently employ the simplest multi-step exponential
integrator with third-order solvers, using the same polynomial discretization across all experiments.

We evaluate performance using Fréchet Inception Distance score(FID;Heusel et al. [13]) for both
ImageNet-64 and ImageNet-512, and additionally use Fréchet Distance-DINOv2(FD-DINOv2;Stein
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ré

ch
et

In
ce

p
ti

on
D

is
ta

n
ce

(F
ID

)

Heun 511 NFE

Baseline: DPM-Solver++

Baseline: UniPC

TADA (ours)

20 30 40 50 60 70

Number of Function Evaluation (NFEs)

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

F
ré
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Figure 5: left: Comparison with baselines on ImageNet-64 using EDM pretrained model. Right:
Performance under varying numbers of variables N while keeping the SNR-based time discretization
same to the N = 2 setting;N = 2 is the default configuration reported throughout this paper.
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ré

ch
et

D
is

ta
n

ce
(D

IN
O

v
2)

Heun 63 NFE

Baseline: DPM-Solver++

Baseline: UniPC

TADA (ours)

Figure 6: Comparison with baselines on ImageNet-512 with EDM2 pretrained model.

et al. [29]) for ImageNet-512. Our results show that TADA consistently outperforms the baselines
across all tested numbers of function evaluations (NFEs) in fig.5 and fig.6. We also examine the
case with N > 2, which introduces additional pseudo noise as described in Prop.3.3. In all setups,
we use the same discretization over SNR and vary only the standard deviation of x(N−1)

0 . This
configuration results in improved performance on ImageNet-64, as shown in fig 5. However, no
consistent improvement is observed on ImageNet-512, which may be attributed to the high capacity
of the neural network and limited exploration of time discretization, thereby diminishing the impact
of the additional noise perturbation. For consistency, we therefore report results only for the N = 2
in fig.6 and the rest of experiments.

Fig 4 presents qualitative results under varying NFE budgets. Unlike conventional ODE solvers,
which tend to produce increasingly blurred outputs as NFEs decrease, TADA continues to generate
plausible images with preserved details. Nevertheless, these images may still deviate from the data
distribution pdata, as indicated by the larger FID metric. See Appendix.F for more examples.

4.2 SD3 Experiment

For evaluations on Stable Diffusion 3 [10], we exclude DPM-Solver++ from comparison, as UniPC
has consistently outperformed it in Section 4.1. Additionally, we observe that the default Flow Match-
ing solver in SD3 achieves performance comparable to UniPC. To enrich our baseline set, we include
a recently proposed SDE-based solver, Stochastic Adam (SA) [32]. All baseline configurations follow
the recommended settings from the official Diffusers implementation. For evaluation, we adopt
HPSv2 [31] as our primary benchmark. Specifically, we generate images for all benchmark prompts,
producing 3200 samples per seed, and report the mean and standard deviation over three random
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Figure 7: Comparison with baselines with HpsV2 metrics with SD3 pretrained model.

Figure 8: Qualitative Comparison with baselines with SD3 model w/o CFG. UniPC delivers no
additional gains in image quality, whereas our method continues to improve. This trend is evident
both in Fig.7 and in the samples generated at NFE = 25.

seeds, thus, totally 9600 images. To ensure consistency, our method uses the same SNR-based
discretization scheme as SD3, which is also the default across all baseline implementations. For the
sake of consistency, we employ a second-order multi-step solver, regardless of CFG scale.

Fig. 7 presents the quantitative performance of TADA compared to the baselines. Our proposed
method consistently outperforms the baselines across all CFG strengths. However, the performance
gap narrows as the CFG increases, suggesting that TADA is particularly effective at lower CFG
values, where it achieves more pronounced improvements over existing methods. Fig 8 demonstrates
that TADA produces images with more semantically coherent content at 25 NFEs than the baseline,
an observation further supported by the quantitative metrics presented in fig.7.

5 Conclusions and Limitations
In this paper, we have identified and elucidated the underlying training principle of the momentum
diffusion model, demonstrating that it fundamentally aligns with that of conventional diffusion models.
This observation enables the direct integration of pretrained diffusion models into momentum-based
systems without additional training. Furthermore, we conducted a thorough analysis of the sampling
dynamics associated with this approach and discovered that the implicit system dynamics introduce
additional pseudo-noise. Empirical evaluations confirmed that this characteristic indeed enhances the
sampling quality across various datasets and pretrained models.

However, our approach also has limitations. On the theoretical side, Prop 3.3 does not disentangle
the degrees of freedom associated with the pseudo noise dimension N and the weighting coefficients
w

(i)
t . As a result, while Fig.5 demonstrates that increasing system stochasticity can lead to improved

outcomes, our method still falls short of matching the SDE results reported in [17] with 511 NFEs.
This shortfall stems from the limited control over the injected stochasticity due to the naive choice
of At. On the practical side, experiments with SD3 show that as model capacity and CFG strength
increase, the performance differences among solvers, dynamical formulations, and between SDE
and ODE sampling become increasingly negligible,a trend that also holds for TADA. Conversely,
the results underscore TADA’s strength in under-parameterized settings, where modest-capacity DM
must tackle large scale, high-dimensional data such as those encountered in video generation. Lastly,
TADA currently uses a basic exponential integrator. Evaluating further improvement with more
advanced solvers, such as UniPC and DPM-Solver++, remains an critical direction for future work.

Broader Impacts: TADA boosts DM efficiency, accelerating the spread of generated content.
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Appendix
In this appendix, we follow the notation introduced before. However, in order to reduce the complexity
of the derivation, we simplify all the coefficient with Kronecker product. For example At := At⊗Id,
µt := µt ⊗ Id.

A Proof of Proposition.3.1

Proof. We first analyze the objective function of momentum diffusion model for N = 2 case, and it
can be generalize to larger N .

min
θ
LMDM(θ) = Ex1,ϵ,t∥ϵθ(xt, t)− ϵ(1)∥22 (6)

= Ex1,ϵ,t
1

Lvv
t

2 ∥L
vv
t ϵθ(xt, t)− Lvv

t ϵ(1)∥22 (7)

= Ex1,ϵ,t
1

Lvv
t

2 ∥L
vv
t ϵθ(xt, t)−

[
x
(1)
t −

Lxv
t

Lxx
t

x
(0)
t −

(
µt

(0) − Lxv
t

Lxx
t

µt
(1)

)
x1

]
∥22

(8)

= Ex1,ϵ,t
1

Lvv
t

2 ∥L
vv
t ϵθ(xt, t)− x

(1)
t +

Lxv
t

Lxx
t

x
(0)
t −

(
Lxv
t

Lxx
t

µt
(1) − µt

(0)

)
x1∥22 (9)

= Ex1,ϵ,t

(
Lxv

t

Lxx
t
µt

(1) − µt
(0)

)2

Lvv
t

2 ∥
Lvv
t ϵθ(xt, t)− x

(1)
t +

Lxv
t

Lxx
t
x
(0)
t

Lxv
t

Lxx
t
µt

(1) − µt
(0)︸ ︷︷ ︸

parameterized Neural Netowrk

−x1∥22 (10)

Following the same spirit, one can derive the case for N variable. See Appendix.I for details.

We know that,
xt

∣∣ x1 ∼ N
(
µtx1, Σt

)
,

Define

rt :=
Σ−1

t µt

µt
TΣ−1

t µt

, yt := r⊤t xt,

and the residual (“noise”)
ϵ := xt − yt µt.

Since the operation is linear, one can transform the xt by

T : xt 7→ (yt, ϵ) =
(
r⊤t xt, xt − (r⊤t xt)

at
µt

)
and it is invertible with linear inverse xt = ytµt + ϵ. Hence the σ-algebras coincide:

σ(xt) = σ
(
yt, ϵ

)
.

For any integrable random variable Z, equal σ-fields imply E[Z | xt] = E[Z | yt, ϵ]. Taking Z = x1

yields
E[x1 | xt] = E[x1 | yt, ϵ].

due to the fact that ϵ is the independent gaussian, thus

E[x1 | xt] = E[x1 | yt, ϵ] = E[x1 | yt, ϵ] = E[x1 | yt].

B Proof of Proposition.3.3

Proof. The dynamics we considered reads

dxt

dt
= At xt + btFt, x0 ∼ N (0, I). (11)

12



and again, in this paper, we only consider,

At =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
0 0 · · · 0 0


N×N

, and bt :=


0
0
...
1

 (12)

If we expand the system, it basically represent:

dx(0)
t = x

(1)
t dt (13)

dx(1)
t = x

(2)
t dt (14)
· · · (15)

dx(N−1)
t = Ftdt (16)

(17)

In our case, the Ft function is:

Ft := N !
x1 −

∑N−1
i=0

x
(i)
t

i! (1− t)i

(1− t)N
(18)

One can easily verify that, when N = 1, it actually degenerate to flow matching:

Ft :=
x1 − xt

1− t
, and (19)

dx(0)
t = Ftdt (20)

One can consider it as the higher augment dimension extension of flow matching model. And the
magical part is that, we do not need to retrain model.

For better analysis, we rearange the system:

dxt

dt
= At xt + btFt (21)

= At xt + btN !
x1 −

∑N−1
i=0

x
(i)
t

i! (1− t)i

(1− t)N
(22)

= At xt +
btN !

(1− t)N
x1 −

btN !
∑N−1

i=0
x
(i)
t

i! (1− t)i

(1− t)N
(23)

= At xt +


0
0
...
N !

(1−t)N


︸ ︷︷ ︸

b̂t

x1 −


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
(1−t)0N !
0!(1−t)N

(1−t)1N !
1!(1−t)N

· · · (1−t)NN !
(N−1)!(1−t)N


︸ ︷︷ ︸

Ãt

xt (24)

:= Âtxt + b̂tx1, (Ât := At − Ãt) (25)

Consider the linear time-varying system:

dxt

dt
= Ât xt + b̂t x1, x0 ∼ N (0, I). (26)

Since (26) is linear and deterministic (apart from the random initial condition), the state remains
Gaussian. Its mean and covariance evolve as follows [26].
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Mean Dynamics. Let
mt = E[xt].

Then
ṁt = Ât mt + b̂t x1, m0 = 0. (27)

We can write the mean in a factorized form as

mt = µt x1,

so that by dividing by x1, we obtain

µ̇t = Ât µt + b̂t.

Covariance Dynamics. Similarly, the convariance follows dynamics

Σ̇t = Ât Σt +Σt Â
T
t (28)

Recall that, Then we define the scalar quantity of interest as

yt :=

(
Σt

−1mt

)T

xt(
Σt

−1mt

)T

µt

=

(
Σt

−1µt

)T

xt

µt
TΣt

−1µt

=
rTt xt

γt
, with γt := µt

TΣt
−1µt. (29)

We wish to compute the derivative of

yt =
rTt xt

γt
,

Using the quotient rule,

ẏt =
d
dt

(
rTt xt

)
γt −

(
rTt xt

)
γ̇t

γ2
t

.

Since rTt xt = ytγt, this becomes

ẏt =
ṙTt xt + rTt ẋt

γt
− yt

γ̇t
γt
.

Derivative of rt

Recall that
rt = Σt

−1µt.

Differentiating gives
ṙt = −Σt

−1Σ̇t Σt
−1µt +Σt

−1µ̇t.

Substitute the known dynamics:

Σ̇t = Ât Σt +Σt Â
T
t ,

µ̇t = Ât µt + b̂t.

It follows that

ṙt = −Σt
−1Σ̇t Σt

−1µt +Σt
−1µ̇t (30)

= −Σt
−1

(
Ât Σt +Σt Â

T
t

)
Σt

−1µt +Σt
−1

(
Ât µt + b̂t

)
(31)

= −Σt
−1Âtµt − ÂT

t Σt
−1µt +Σt

−1Âtµt +Σt
−1b̂t (32)

= − ÂT
t rt +Σt

−1 b̂t. (33)

Derivative of xt

From (26),
ẋt = Ât xt + b̂t x̂1.
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Derivative of γt

Recall
γt = µt

T Σt
−1 µt = rTt µt.

Differentiating,
γ̇t = ṙTt µt + rTt µ̇t.

Using (30) and µ̇t = Âtµt + b̂t, one obtains (after cancellation) the result:

γ̇t =
(
− ÂT

t rt +Σt
−1 b̂t

)
µt + rT

(
Âtµt + b̂t

)
(34)

= 2 b̂T
t rt (35)

= 2 b̂T
t Σt

−1µt (36)

Combining Everything

Substitute the pieces into

ẏt =
ṙTt xt + rTt ẋt

γt
− yt

γ̇t
γt
.

Using

ṙTt = − rTt Ât + b̂T
t Σt

−1,

rTt ẋt = rTt
(
Âtxt + b̂t x̂1

)
,

we have:

ṙTt xt + rTt ẋt =
[
− rTt Ât xt + b̂T

t Σt
−1 xt

]
+
[
rTt Ât xt + rTt b̂t x̂1

]
= b̂T

t Σt
−1 xt + rTt b̂tx1

Thus,

ẏt =
b̂T
t Σt

−1 xt + x1 r
T
t b̂t

γt
− yt

γ̇t
γt
. (37)

Recall that γt = µt
T Σt

−1 µt and γ̇t = 2 b̂T
t Σt

−1 µt. Also note that

rTt b̂t = µt
T Σt

−1 b̂t.

Thus, the final expression becomes

ẏt =
b̂T
t Σt

−1 xt + x̂1 µt
T Σt

−1 b̂t

µt
T Σt

−1 µt

− yt
2 b̂T

t Σt
−1 µt

µt
T Σt

−1 µt

(38)

=
b̂T
t Σt

−1

µt
T Σt

−1 µt︸ ︷︷ ︸
et

xt +
µt

T Σt
−1 b̂t

µt
T Σt

−1 µt

x1 −
2 b̂T

t Σt
−1 µt

µt
T Σt

−1 µt

yt (39)

The frist term is essentially one kind of linear combination of xt, and Recally that yt = rTxt :=
µT

tΣ
−1
t

µT
tΣ

−1
t µt

which is another linear combination of xt. Assume that xt ∼ N (µtx1,Σt), thus, one can
derive the relationship between the frist term and yt. Thus, according to Lemma.H.1

b̂T
t Σt

−1

µt
T Σt

−1 µt

xt = eTt

[
I− Σtrtr

T
t

rTt Σtrt

]
µtx1 +

eTt Σtrt
rTt Σtrt

yt + eTt Ltϵ⊥, (40)

ϵ⊥ ∼ N
(
0, Id − LT

t rtr
T
t Lt/r

T
t Σtrt

)
. (41)

Thus, by plugging in the expression, one can get:

ẏt = αtyt + βx1 + eTt Ltϵ⊥ (42)

≈ αtyt + βxθ + eTt Ltϵ⊥ (43)
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Where,

αt =
eTt Σtrt
rTt Σtrt

− 2 b̂T
t Σt

−1 µt

µt
T Σt

−1 µt

(44)

βt =
µt

T Σt
−1 b̂t

µt
T Σt

−1 µt

+ eTt

[
I− Σtrtr

T
t

rTt Σtrt

]
µt (45)

w
(i)
t = (eTt Lt)

(i) (46)

C Experiment Details

Here we elaborate more on experiment details.

C.1 EDM and EDM2

For the baselines on EDM and EDM2 codebase, we directly use the code provide in DPM-Solver-
v3[36]. For the fair comparision, for all baselines, we controlled σmin = 0.002 and σmax = 80 as
suggested in the original EDM and EDM2 paper.

For DPM-Solver++, we did abalation search over order ∈ [1, 2, 3], discretization ∈
[logSNR, time uniform, , edm, time quadratic].

For UniPC, we did abalation search over order ∈ [1, 2, 3], discretization ∈
[logSNR, time uniform, , edm, time quadratic],variant ∈ [bh1, bh2].

For all the ablation results, please see the supplementary material.

C.2 Stable Diffusion 3

For stable diffusion 3, we simply plug in the implementation of all the baselines provided in the
Diffuser. We use latest HpsV2.1 to evaluate generate dresults.

D Additional Plots

D.1 General N variable dynamics

This section is not referenced in the main paper and will be removed soon; it is retained only for now
to keep the appendix numbering aligned with the main paper.

E Detailed Explanations

E.1 Explicit form of At and bt

Here we demonstrate the At and bt used in AGM[6] and CLD[9]. Here we abuse the notation and
inherent the notation from CLD.

Table 1: Comparison of different solvers
Algorithm At b Ft

AGM[9]
[
0 1
0 0

]
[0, 1]T −4

t−1

(
x1−x

(0)
t

1−t − x
(1)
t

)
CLD[9]

[
0 −M−1

1 ΓM−1

]
β [0,Γβ]T ∇

x
(1)
t

log p(x, t)
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E.2 Explicit form of mean and convariance matrix

Here we first quickly derive how the F derived which is straight-forward. We know x
(0)
t := xt be

the position and define higher derivatives recursively

x
(k)
t =

dkx
(0)
t

dtk
, k = 1, . . . , N − 1.

The system dynamics form an N th–order chain of integrators driven by a scalar input F (t,xt):

ẋ
(0)
t = x

(1)
t ,

ẋ
(1)
t = x

(2)
t ,

...
ẋ
(N−2)
t = x

(N−1)
t ,

ẋ
(N−1)
t = F (t,xt). (47)

Equivalently, the position satisfies the scalar ODE

dNx
(0)
t

dtN
= F (t,xt) .

Our goal is starting at some time t ∈ [0, 1) with known state
{
x
(k)
t

}N−1

k=0
, choose F so that the

position reaches a prescribed value at t = 1:

x
(0)
1 = x1 (“hit the target”).

Assume F is held constant over the remaining interval [t, 1]. Repeated integration yields the degree-N
Taylor polynomial about t:

x
(0)
1 =

N−1∑
k=0

(1− t)k

k!
x
(k)
t +

(1− t)N

N !
F. (48)

Thus, one can simply solve the F by Rearranging (48) to isolate F :

F =
N !

(1− t)N

[
x1 −

N−1∑
k=0

(1− t)k

k!
x
(k)
t

]
.

Thanks to the simple form of F , one can readily write down the mean and covariance of the system.

Now we know

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
0 0 . . . 0 0

 , bt = [0, . . . , 0, 1]⊤.

By rearraging the dynamics, gives the linear time-varying closed loop

ẋt = Ât︸︷︷︸
A w/ control

xt + b̂︸︷︷︸
b w/ control

x1 (49)

We need first compute the transition matrix induced by Ât and we call it controlled transition matrix.
By Solving Φ̇ = ÂtΦ column-wise gives the polynomial matrix

Φ(t, 0) =
[
Tk,m(t)

]N−1

k,m=0
, Tk,m(t) =


tm−k

(m− k)!
− N ! tN−k

(N − k)!m!
, m ≥ k,

− N ! tN−k

(N − k)!m!
, m < k.
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Plugging this Φ(t, 0) into the boxed formulas above supplies µ(t) and Σ(t) explicitly for every order
N .

Let µ(t) = E[xt]. Because b̂tx1 is deterministic,

µ̇(t) = Ât µ(t) + b̂t x1, µ(0) = µ0. (50)

Define the state–transition matrix Φ(t, τ) of Ât:

Φ̇(t, τ) = Ât Φ(t, τ), Φ(τ, τ) = I.

Then the standard variation-of-constants formula gives

µt = Φ(t, 0)µ0 +

∫ t

0

Φ(t, τ) b̂τ x1 dτ.

If the initial derivatives are i.i.d. N (0, 1), then µ0 = 0 and only the integral term remains. Carrying
out the integral (polynomials of τ ) yields

µ
(k)
t =

N ! tN−k

(N − k)!
x1, k = 0, . . . , N − 1.

Meanwhile, the propagation of covariance matrix is:

Σ̇t = ÂtΣt +ΣtÂ
⊤
t , Σ(0) = Σ0. (51)

Eq.51 is a homogeneous Lyapunov ODE whose unique solution is exactly (see Appendix.G for more
details):

Σt = Φ(t, 0)Σ0 Φ(t, 0)
⊤.

E.3 Previous Fast Solver

Table 2: Comparison of different solvers
Order type Order Multistep type Expansion term Discretize space

Heun[17] Single Step 2 N/A N/A σt

DEIS[33] Multi-step 2/3/4 Adams–Bashforth ϵθ σt

DPM-Solver[22] Multi/Single-step 2/3/4 Adams–Bashforth ϵθ Optional
DPM-Solver++[23] Multi/Single-step 2/3/4 Adams–Bashforth xθ Optional
UniPC[34] Multi-step 3/4/5 Adams–Moulton xθ Optional
TADA(ours) Multi-step 2/3 Adams–Bashforth Fθ t

E.4 Extended Flow Matching

In the framework of flow mathcing, one obtain the velocity by vt =
x1−xt

1−t because it is the linear
interpolation between data x1 and prior x0. And meanwhile, it happens to be the solution of optimal
control problem:

min
vt

∫ 1

t

∥vt∥22dt, s.t dxt = vtdt (52)

For the detailed derivation, please see Sec.C.1 in [6].

For AGM, they consider a momentum system, which reads

min
at

∫ 1

t

∥at∥22dt, s.t dxt = vtdt, dvt = atdt+ dwt (53)
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The differences is that, AGM consider the injection of stochasticity in the velocity channel. For our
case, the Fθ derived in Sec.3.2, is the solution for

min
Ft

∫ 1

t

∥Ft∥22dt

dx(0)
t = x

(1)
t dt

dx(1)
t = x

(2)
t dt
· · ·

dx(N−1)
t = Ftdt

and its spirit keeps same as previous formulation, move x
(0)
t to x0

1 ∼ pdata from t = 0 to t = 1.

E.5 Degenerate Case of TADA

Here we discuss about the degenerated case of TADA. The reasoning behind it is rather simple. We
show the dynamics of yt (eq.39) again here,

ẏt =
b̂T
t Σt

−1

µt
T Σt

−1 µt︸ ︷︷ ︸
et

xt +
µt

T Σt
−1 b̂t

µt
T Σt

−1 µt

x1 −
2 b̂T

t Σt
−1 µt

µt
T Σt

−1 µt

yt (54)

and recall that

yt =
µt

TΣ−1
t

µt
TΣ−1

t µt

(55)

Thus, if the first term depends exclusively on yt, the system reduces to the scalar ODE for yt and
becomes formally identical to other diffusion-model parameterizations such as VP, VE, or FM. More
precisely, in order to degenerate TADA, one only requires

µt ∝ b̂t (56)

where b̂t is defined in eq.24. This proportionality holds in two scenarios:

1. When N = 1, so that µt and b̂t are scalars. In that case, the framework collapses to flow
matching—a mere reparameterization of the diffusion model.

2. When At is diagonal and its components evolve independently. Then every dimension of µt and
b̂t shares the same mean and variance, and proportionality follows directly.

A simple empirical check is to propagate the model from different random initializations using our
formulation: it yields identical FID scores after generation, confirming the degeneracy.

F Additional Qualitative Comparision

Please see fig.10 and fig.9.

G Solution of the homogeneous Lyapunov ODE

Let Φ(t, τ) be the state–transition matrix of the (possibly time–varying) coefficient At:

Φ̇(t, τ) = At Φ(t, τ), Φ(τ, τ) = I.

Throughout we abbreviate Φ(t, 0) ≡ Φ(t).

1. Candidate solution. Consider

Σ(t) = Φ(t) Σ0 Φ(t)
⊤.
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Figure 9: Additional Visual comparision with UniPC using EDM2 w/ 5 NFEs.

2. Verification. Differentiate previous equation and use the product rule together with Φ̇(t) =
AtΦ(t) and d

dtΦ(t)
⊤ = Φ(t)⊤A⊤

t :

Σ̇(t) = Φ̇Σ0Φ
⊤ +ΦΣ0Φ̇

⊤

= AtΦΣ0Φ
⊤ +ΦΣ0Φ

⊤A⊤
t

= AtΣ(t) + Σ(t)A⊤
t .

Hence Σ(t) satisfies the differential equation in (Lyap), and Σ(0) = Φ(0)Σ0Φ(0)
⊤ = Σ0.

3. Uniqueness. Lyapunov Equation is linear in the matrix variable Σ; by the Picard–Lindelöf
theorem its solution is unique. Therefore (S) is the solution.

H Correlation between two Guassian Variable

Lemma H.1. Let the random vector

xt ∼ N
(
µx1, Σt

)
, Σt = LtL

⊤
t (Cholesky factorisation).

For two fixed column-vectors r, e ∈ Rd set

yt := r⊤t xt, zt := e⊤t xt.

Write the convenient abbreviations

ct := r⊤t µt x1, dt := e⊤t µt x1, gt := L⊤t rt, ht := L⊤t et, σ2
y := ∥gt∥2.
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Figure 10: Additional Visual comparision with UniPC using EDM2 w/ 5 NFEs.

Then

zt = eTt

[
I− Σtrtr

T
t

rTt Σtrt

]
µtx1 +

eTt Σtrt
rTt Σtrt

yt + eTt Ltϵ⊥, ϵ⊥ ∼ N
(
0, Id − LT

t rtr
T
t Lt/r

T
t Σtrt

)
.

Proof.

yt = ct + gT
t ϵ, zt = dt + hT

t ϵ.

Any vector can be decomposed into the component along s and the component orthogonal to s:

ϵ =
gt

σ2
y

(gT
t ϵ) + ϵ⊥, gT

t ϵ⊥ = 0

Because ϵ ∼ N (0, Id) and the projector onto gt is orthogonal to the projector onto the complement,
gT
t ϵ and ϵ⊥ are independent Gaussian variables.

Insert gT
t ϵ = yt − ct to obtain

ϵ =
gt

σ2
y

(yt − ct) + ϵ⊥, ϵ⊥ ∼ N
(
0, Id − gtg

T
t /σ

2
y

)
.
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Then we can plug this into zt:

zt = dt + hT
t

( gt

σ2
y

(yt − ct) + ϵ⊥

)
(57)

= eTt µtx1 +
hT
t gt

σ2
y

(yt − ct) + hT
t ϵ⊥ (58)

= eTt µtx1 +
hT
t gt

σ2
y

yt −
hT
t gtr

T
t µt

σ2
y

x1 + hT
t ϵ⊥ (59)

= eTt µtx1 +
eTt Σtrt
rTt Σtrt

yt −
eTt Σtrt
rTt Σtrt

(
rTt µt

)
x1 + eTt Ltϵ⊥ (60)

= eTt

[
I− Σtrtr

T
t

rTt Σtrt

]
µtx1 +

eTt Σtrt
rTt Σtrt

yt + eTt Ltϵ⊥ (61)

I General N variable MDM loss

At time t the N -variables are generated by

xt = µt x1 + Lt ε ε ∼ N (0, IN ),

with known µt ∈ RN and invertible Lt ∈ RN×N . The goal is to predict ε(N−1).

By whitening trick, one can isolate ϵ(N−1). Let e⊤N−1 = [0, . . . , 0, 1] be the row vector that selects
the last coordinate. Left-multiplying by e⊤N−1L

−1
t gives

e⊤N−1L
−1
t xt = e⊤N−1L

−1
t µt x1 + e⊤N−1 L

−1
t Lt︸ ︷︷ ︸
IN

ε.

Define the time-dependent scalars

a⊤t := e⊤N−1L
−1
t ∈ RN , bt := a⊤t µt ̸= 0,

then

ϵ(N−1) = a⊤t xt − bt x1. (62)

A neural network εθ(xt, t) is trained to approximate ε(N−1) with the standard

LMDM(θ) := E∥εθ(xt, t)− ϵ(N−1)∥22

Insert eq.62 and multiply the interior by bt:

LMDM(θ) = E∥εθ(xt, t)− a⊤t xt + bt x1∥22
∝ E∥gθ(xt, t)− x1∥22

where

gθ(xt, t) := −
εθ(xt, t)− a⊤t xt

bt

22
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