arXiv:2506.20639v2 [cs.CL] 26 Jun 2025

DIFFUCODER:

UNDERSTANDING AND IMPROVING

MASKED DIFFUSION MODELS FOR CODE GENERATION

Shansan Gong'*?, Ruixiang Zhang', Huangjie Zheng', Jiatao Gu', Navdeep Jaitly'",

Lingpeng Kong?', Yizhe Zhang'

!Apple 2The University of Hong Kong TCore advising
sansa933@connect.hku.hk; 1lpk@cs.hku.hk;yizhe_zhanglapple.com

Work done during the internship at Apple

ABSTRACT

Diffusion large language models (dLLMs) are compelling alternatives to autoregres-
sive (AR) models because their denoising models operate over the entire sequence.
The global planning and iterative refinement features of dLLMs are particularly
useful for code generation. However, current training and inference mechanisms
for dLLMs in coding are still under-explored. To demystify the decoding behavior
of dLLMs and unlock their potential for coding, we systematically investigate
their denoising processes and reinforcement learning (RL) methods. We train a 7B
dLLM, DiffuCoder, on 130B tokens of code. Using this model as a testbed, we
analyze its decoding behavior, revealing how it differs from that of AR models:
(1) dLLMs can decide how causal their generation should be without relying on
semi-AR decoding, and (2) increasing the sampling temperature diversifies not
only token choices but also their generation order. This diversity creates a rich
search space for RL rollouts. For RL training, to reduce the variance of token log-
likelihood estimates and maintain training efficiency, we propose coupled-GRPO,
a novel sampling scheme that constructs complementary mask noise for comple-
tions used in training. In our experiments, coupled-GRPO significantly improves
DiffuCoder’s performance on code generation benchmarks (+4.4% on EvalPlus)
and reduces reliance on AR bias during decoding. Our work provides deeper insight
into the machinery of dLLM generation and offers an effective, diffusion-native
RL training framework. https://github.com/apple/ml-diffucoder

N N (7
[Instruct 1x 3 w. GRPO 1x
from typing import List @ || Base Models ~__Humaneval - (b) © Instruct 2x B w. GRPO 2x
def seoarate naren urouns(naren strina: str) —> Listlstrl:
put to s function is a strina containina multiole aro BCB Hard _—
senarate thase aroup into separate strings and. return the 135% f{ o
Separate aroups are balanced (each unen brace is properly clos / HE
Ianore anv spaces in the inout str. ([|
777 seoarate oaren aroups(*() ((RIETEI) [[I
LOn o), oo \ [/
narentheses = paren_strmg.replace() MBPP$ //“
curren =" N
gurreRt count = th \}»/ HE+
or char in e — [
e e —
i
L L — nstruct Models _Humanéval
re:ult.ar.gnend1
urrent count +=
:urrent count -= char == ')' BCB Hard
‘return result /
<|d1m oad|><|d1m pad|><|dlm pad|><|dlm pad|><|dlm padl><|dlm pad|> [
<ldlm padl><ldlm pad|><|dlm pad|><Idlm pad|><Idlm padl><Idlm pad|> ‘
<ldlm padl><ldlm pad|><|dlm pad|><|dlm pad|><Idlm padl><Idlm pad|> \
<ldlm padl><ldlm padl><ldlm padl><Idlm padI><Idlm padl><ldlm padl> MBPP-
Generation order o E
= HumanEval+
(start) (middle) (end) — UWabA — DiffuCoder 0 20 40 60 80
N Dream 4 Gemini Diffusion JAN Scores (%))

Figure 1: (a) A real example of DiffuCoder-Instruct’s decoding process with sampling temperature
1.2. (b) Results on coding benchmarks. (c) When decoding steps are halved, DiffuCoder-Instruct
trained with coupled-GRPO experiences a smaller performance drop, compared to Instruct itself.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing, achieving remark-

able results across tasks from dialogue to code generation (Touvron et al.,

2023; OpenAl, 2023).

https://github.com/apple/ml-diffucoder
https://arxiv.org/abs/2506.20639v2

While these successes are built predominantly on the autoregressive (AR) paradigm, masked diffusion
models (MDMs) have recently emerged as a compelling alternative (Zheng et al., 2024; Shi et al.,
2024, Sahoo et al., 2024), and are further scaled to diffusion LLMs (dLLMs) like LLaDA (Nie et al.,
2024) and Dream (Ye et al., 2025), which achieve performance on par with similarly sized AR LLMs.
Rather than generating left-to-right, MDMs iteratively refine the entire sequence in parallel, which
allows for global planning of content (Ye et al., 2024a; Zhang et al., 2023).

Intuitively, code generation aligns well with the dLLM paradigm, as writing code often involves
non-sequential back and forth refinement (Xie et al., 2025). Recent commercial-scale dLLMs,
Mercury (Inception Labs et al., 2025) and Gemini (DeepMind, 2025), show that a diffusion-based
code generator can rival top AR code models. However, it remains unclear how open-source dLLMs
perform on coding tasks, as their training and inference mechanisms are not yet fully interpreted.
Existing post-training efforts for dLLMs, such as LLaDA1.5 (Zhu et al., 2025) with DPO (Rafailov
et al., 2023) training, and d1 (Zhao et al., 2025), MMaDA (Yang et al., 2025) with GRPO (Shao et al.,
2024) training, either show marginal gains or rely heavily on semi-AR decoding (i.e., block decoding
with a relatively small block size; see Arriola et al., 2025) which deviates from the global planning
nature of diffusion. To address these limitations, we first gain insight into decoding behaviors of
dLLMs and then establish a diffusion-native reinforcement learning (RL) methodology.

Our investigation is grounded in the analysis of DiffuCoder, a 7B-scale MDM specialized for code
generation (§3), trained on 130B effective tokens (Huang et al., 2024). The model’s performance is
competitive with that of AR coders, providing a strong testbed for understanding the behaviors of
dLLMs and for developing diffusion-native post-training approaches.

To leverage the benefits of non-autoregressiveness in dLLMs, it is important to understand how
non-autoregressive the behavior of current dLLMs actually is. To this end, we introduce local
and global autoregressive-ness (AR-ness) metrics (§4.1) to measure how closely their generation
follows a left-to-right pattern. Our analysis reveals that dLLMs exhibit an entropy sink phenomenon
(§4.2), which causes a strong causal bias during conditional generation using low-confidence re-
masking decoding (Chang et al., 2022). We show that DiffuCoder can automatically decide how
non-autoregressive it needs to be during decoding. When the sampling temperature is increased
from the default 0.2 to 1.2, DiffuCoder becomes more flexible in its token generation order, freeing
itself from strict left-to-right constraints, as Figure |(a) shows. Unlike AR models, which primarily
diversify token choices at higher temperatures, dLLMs additionally diversify the position of the
generated token. With this increased diversity, DiffuCoder achieves higher pass@ 10 accuracy by
changing the sampling temperature from 0.2 to 1.2 in our experiments (§4.3). The gain in pass@ 10
indicates the potential capacity of DiffuCoder, suggesting it can benefit from effective RL training to
“elicit out” the most successful rollout samples.

Following this, we tailor GRPO (Shao et al., 2024) for dLLMs. Our design focuses on reducing vari-
ance while maintaining efficiency in Monte Carlo estimations of token likelihoods. Specifically, we
propose coupled-GRPO, which employs a novel coupled-sampling scheme. In detail, it adds paired
complementary mask noise to the completion sequences generated by the model at a temperature of
1.2. Unlike previous approaches (Zhao et al., 2025), our method does not rely on semi-AR decoding
and it further improves the instruct-tuned model. After coupled-GRPO training, the model exhibits a
stronger non-AR generation pattern, as inferred from Figure 1(c).

In summary, our contributions are as follows.

* We introduce a 7B dLLM for code generation, providing a foundation for developing diffusion-
native training methods (§3).

* We introduce local and global AR-ness metrics to demystify the decoding patterns of dLLMs and
track how AR-ness evolves across different training stages (§4.2). Our analysis reveals that higher
sampling temperatures encourage more parallel, non-AR generation (§4.3).

* We design coupled-GRPO, an RL algorithm for dLLMs that avoids semi-AR decoding by using a
novel coupled-sampling scheme for efficient and accurate policy gradient estimation (§5). We
theoretically prove the variance reduction of coupled-GRPO using antithetic variates.

» Experimentally, coupled-GRPO significantly improves DiffuCoder’s performance, boosting its
EvalPlus score by 4.4% with training on only 21K samples and demonstrating the effectiveness of
RL aligned with diffusion principles.

2 PRELIMINARIES AND NOTATIONS

2.1 MASK DIFFUSION MODELS

In diffusion models (Ho et al., 2020; Song et al., 2021), the forward process g(x1.7|xg) =
H;l q(@¢|xi—1) gradually corrupts data @y ~ pgatq(@o) into noisy variables @;.7. The back-
ward process models the joint probability as pg(xo.r) = pe(xT) H;‘F:l po(@t—1|xt), denoising s to
reconstruct xq. Discrete diffusion models (Hoogeboom et al., 2021; Zheng et al., 2024) define the for-
ward process with a categorical distribution q(x¢|z;_1) = Cat(zs; Q, x;_1), where x; € {0,1}%
is a one-hot vector with vocabulary size K, and Q; € [0, 1]5X*¥ is the transition matrix where [Q;];;
represents the probability of transition from state 7 to j. For absorbing discrete diffusion (Austin et al.,
20212), Q¢ = (1 — B¢)I + B1m ", where 1 is an all-one vector of size K and m is the one-hot
encoding of a special [MASK] token. The parameters # are learned by minimizing the negative
log-likelihood of x(through the evidence lower bound (ELBO). For continuous time modeling (Shi
et al., 2024; Sahoo et al., 2024), the discrete timesteps ¢t = {1...T'} are scaled to a mask ratio within
[0, 1], yielding the final ELBO at a sampled time ¢ as a weighted cross-entropy loss:

~N_lg .
LN = “Ey(ay) Z5m”mfvo log fo(z{ ™)n| (D

n=1

where dgn o is the indicator function, and fp(z; 1:N), represents the logits for the n-th token given
the N- length input sequence.

2.2 MARKOV DECISION PROCESS

DDPO (Black et al., 2024) and DPPO (Ren et al., 2025) reinterpret the denoising diffusion process
as a Markov Decision Process (MDP). An MDP is a tuple M., = (S, A, Py, P, R) with a state
space S, an action space A, an initial state distribution Py, transition probabilities P, and a reward
function R. The probability of transitioning to state s;41 is P(s¢4+1 | s¢, a;) after taking an action
a; ~ mo(a; | s¢) and receiving a reward R(s;,a;). The goal is to maximize the expected return

J(mg) = Enr, [Ztho ~(t) R(st, at)} by using the policy gradient method (Williams, 1992):

T

VoJ (mg) = Er, [Z Vo log mo(ag|st) re(st, at)]; (st at) Z’y R(sr,ar). (2)

t=0 T>t

In a masked diffusion model for conditional generation, we set the state to s; = (¢, t, ;) (where c is
the condition) and the action to a; = @;—_1, so that g (a¢|s;) = pe(xi—1|x:, c). We sample ¢ € C and
trajectories of @;. The reward is defined as R(sg, ag) = r(xo, ¢) at the final denoising step because a
fine-grained progressive reward is usually hard to quantify, especially in intermediate diffusion steps.

Under this setting, the policy gradient becomes: Vo7 = E [ZZ:O Vo log pg(xi—1]xs,) r(xo,).

2.3 GROUP RELATIVE PoOLICY OPTIMIZATION

GRPO (Shao et al., 2024) simplifies PPO (Schulman et al., 2017). It samples a group of outputs
{0;}$_, from the old policy 7, under a given condition c, estimates the value baseline by averaging
rewards within the group, and defines the relative advantage for each output as A; = r(o;) —

1 ¢ , _ k— mo(ofleor®)
G 2_j—17(0;j). For token 1 < k < |o;|, we denote p; = Wold(oklc 527y a8 the token-level importance

ratio. The GRPO loss applies a PPO-style clipping to p¥, incorporating a KL-penalty to keep g
close to a reference policy s, and maximizes the following surrogate objective:

G o

Joreo(0) = Eo,nr,,, {Z > min(pf Ay, clip(pf, 1 —,1+¢)A;) — 8 D, (776||7Tref)} N E)
i=1 k=1

By estimating the group mean via Monte Carlo estimation, GRPO avoids training a separate value

function while fitting neatly into the MDP framework. As the diffusion process can be viewed as an
MDP, the GRPO loss can be applied to MDMs by combining Eq. (2) and Eq. (3).

Stages Stage Stage I Stage 111 Stage IV Coupled-GRPO) Ct:(ndition % Ct:(mpleuon Mask | Token Varince |
tokens ¢ tokens o; states | Coverage Reduction !

Descrip- Adaptation- Mid- Instruction ‘j{ DD DD 3 ”("””1”1””7”” 3
0q 9q . s ! oupled sampling |

tion pretraining training tuning B DD DD —{ DD 1 Hv'gP)\ rgv'gﬁ: !
Partial mask for t = 0.6 Pt = 8mpo(xe) < DD | ;];;i;i;";;’;l""‘;"” i

Training RefineCode OpenCoder OpenCoder

i p!
Data mixture annealing SFT - { DD DDD Full mask for t = 1.0 P1 =paCx) i High |
..] N N : s e |
Training ~ Packed Packed radded < I NOSOO estimated probabilities: | compiction full mask |
Strategy Unconditional ~ Unconditional ~ Conditional Complement mask for = 0.4 Pi = mpo(xo) (P + P+ P)/2 L High ;

Figure 2: Pipeline of DiffuCoder training stages and an illustration of the coupled-GRPO algorithm.
We sample complementary mask matrices for the same batch, so the coupling probability matrices
can be merged into one full matrix. Coupled sampling reduces probability estimation variance while
maintaining full token coverage, where each token is sampled exactly the same number of times.

3 DI1rFUCODER

To build a strong base model for RL training, we follow common practices in LLM training and train
our DiffuCoder model on a large-scale corpus (Lozhkov et al., 2024) with multiple training stages;
the pipeline is illustrated in Figure 2. We first conduct adaptation pre-training similar to the process
followed by Dream (Ye et al., 2025). Mid-training (Wang et al., 2025) connects the pre-training and
post-training stages, plays the role of an annealing phase as in OpenCoder (Huang et al., 2024), and
has proven effective. This is followed by an instruction tuning stage to enhance the model’s capability
of following instructions. Finally, for post-training, we employ a novel coupled-GRPO method
(introduced in §5) to further enhance the model’s pass@1 coding capabilities.

Training We adapt our model from Qwen-2.5-Coder (Hui et al., 2024) as the base model to
perform continual pre-training using the adaptation approach from Gong et al. (2025). During this
pre-training, we use a 400B-token code pre-training corpus from RefineCode (Huang et al., 2024)
and Stackv2 (Lozhkov et al., 2024). We adopt the code-to-text ratio suggested in Qwen-2.5-Coder
and OpenCoder (Huang et al., 2024). We use 16B tokens of annealing code data during mid-training
and 436K SFT samples during instruction tuning, both from OpenCoder (Huang et al., 2024). For RL
training, we select 21K hard samples from Acecoder-87K (Zeng et al., 2025) with verifiable test cases.
We build our post-training method upon the Open-R1' codebase. All experiments are conducted on 8§
to 10 nodes, each with 8 H100 GPUs. We observed that training with 700B tokens in Stage 1 led to
worse performance than using only 65B tokens on the downstream validation sets. Therefore, we
perform early stopping for Stage 1, training on 65B tokens. In Stage 2, we train for 4 epochs, totaling
65B tokens with repeats, as the mid-training data is less noisy. More details are listed in Appx.

Evaluation Our evaluation environments are built on three code benchmarks and their variants: Hu-
manEval (Chen et al., 2021), MBPP (Austin et al., 2021b), EvalPlus (HumanEval+ and MBPP+; Liu
et al. 2023), and BigCodeBench (Zhuo et al., 2024) with full and hard subsets in completion (C) and
instruction (I) query types. These benchmarks, with Python as the coding language, provide a diverse
set of coding tasks for assessing code correctness and quality.

Performance We compare our models with AR code LLMs, including Qwen2.5-Coder-7B (Hui
et al., 2024), OpenCoder-8B (Huang et al., 2024); general dLLMs, such as Dream-7B (Ye et al.,
2025) and LLaDA-8B (Zhu et al., 2025); and commercial models, such as GPT-40°, Mercury,
and Gemini Diffusion”. As shown in Table |, DiffuCoder, after being continually trained on 130B
code tokens (Stages 1 and 2), achieves performance on par with Qwen2.5-Coder and OpenCoder.
However, all dLLMs show only marginal improvement over their base models after instruction tuning,
especially when compared to Qwen2.5-Coder+SFT, which achieves large improvements from being
instruct-tuned on the same data.

This improvement gap between AR and dLLM:s at the instruction-tuning stage motivates us to explore
RL-based post-training methods (§5). Previous RL approaches for diffusion models (Zhao et al.,

"https://github.com/huggingface/open-rl

2https ://openai.com/index/gpt-4o-system-card/
*https://chat.inceptionlabs.ai/
*nttps://deepmind.google/models/gemini-diffusion/

https://github.com/huggingface/open-r1
https://openai.com/index/gpt-4o-system-card/
https://chat.inceptionlabs.ai/
https://deepmind.google/models/gemini-diffusion/

Table 1: Benchmark coding capacities of LLMs and dLLMs in 7/8B scale. Different shaded colors
indicates different generation paradigms (pink for AR, yellow for diffusion). * denotes that the results
are collected from public reports instead of evaluating by ourselves. In our evaluation settings, we
compute EvalPlus as the average of HE+ and MBPP+. We show the absolute score change (£) of each
instruct model relative to its base. Scores are bolded when our model outperforms LLMs specialized
for code (excluding LLaDA or Dream).

Model HumanEval MBPP EvalPlus BigCodeBench (C) Avg.
- Plus - Plus Full Hard
Base Models
Qwen2.5-Coder 61.6 51.8 75.9 61.4 56.6 46.1 16.2 52.2
OpenCoder™ 66.5 63.4 79.9 70.4 66.9 40.5 9.5 55.0
LLaDA 354 30.5 50.1 42.1 36.3 18.9 4.1 30.2
Dream 56.7 50.0 68.7 57.4 53.7 23.6 4.1 43.4
DiffuCoder 67.1 60.4 74.2 60.9 60.6 40.2 12.8 52.6
Instruct Models

Qwen2.5-Coder-Instruct 90.2 85.4 83.9 72.0 78.7 50.7 21.6 67.3
Qwen2.5-Coder+SFT 82.9+213 75.64238 80.1442 66.1447 T70.9+143 46.9+08 16200 61.3+9.1
OpenCoder-Instruct™ 83.5+17.0 78.7+153 79.1-08 69.0-14 73.9+70 40.3-02 16.9:74 61.3463
LLaDA-Instruct 35400 31.7+12 31.5-186 28.6-135 30.2-6.1 16524 2714 24453
Dream-Instruct 579412 537437 683-04 56.1-13 54.9+12 10.6-130 0.7-34 41.222
DiffuCoder-Instruct 72.0+49 652448 75.1+09 61.9+10 63.6:30 35745 12206 53.7+11
+ coupled-GRPO 73.2:6.1 683479 78.6+44 67.5:66 67.9:73 40.4+02 10.820 56.5+39

Commercial Models

GPT 40* 90.2 - 82.2 - 82.4 49.9 - -
Mercury™ 90.0 - 77.1 - 80.4 45.5 - -
Gemini Diffusion™ 89.6 - 76.0 - - 454 - -

2025; Yang et al., 2025) rely heavily on semi-AR decoding, which deviates from diffusion’s global
nature. To design RL methods aligned with diffusion’s non-autoregressive principle, we first analyze
the intrinsic decoding behavior of dLLMs and their differences from AR models in §4.

4 UNDERSTANDING MASK DIFFUSION MODELS BASED ON DIFFUCODER

Current dLLMs such as LLaDA (Nie et al., 2024) and Dream rely on low-confidence remasking
decoding strategies (Chang et al., 2022), and LLaDA achieves improved performance on certain tasks
using semi-AR decoding methods (i.e., block diffusion decoding; see Arriola et al., 2025). Another
common practice among dLLMs is to set the number of diffusion timesteps equal to the sequence
length, effectively resorting to token-by-token generation to enhance performance. Given this context,
we introduce local and global autoregressive-ness (AR-ness) metrics to systematically investigate the
decoding order of dLLMs. Specifically, our analysis aims to demystify: (1) how dLLMSs’ decoding
patterns differ from those of AR models; (2) how data modality (e.g., code or math) influences model
behavior; and (3) how AR-ness evolves across different training stages.

4.1 AUTOREGRESSIVE-NESS IN GENERATION

In standard AR decoding, the model generates tokens in strict left-to-right order, ensuring strong
sequential coherence. However, diffusion-based decoding may choose to recover [MASK] out of
order. Therefore, we introduce two metrics to quantify how the unmasking schedule of a diffusion
model resembles an AR pattern, including (i) “next token” pattern and (ii) “left first” pattern.

Local: Consecutive Next-Token Prediction Local AR-ness@Fk is computed by the ratio of pre-
dicted sequence matching the pattern of next token prediction within range k. If all tokens in k-length
span are immediate successors of the previously generated token, we count this span as casual. Local
AR-ness decays as k grows, as it is harder to maintain longer consecutive spans.

0 LLaDA - Local AR-ness Adapted DLM - Local AR-ness 0.6 Max probs of each token
.6 0 0.
C Code |5 cone | B4 || | |
©0.4 ---- Math |© --- Math | £¢7p iy ¢ :
o a 05| &] 100 150 200 250
c c 0. <l .
202 M e L (a) Token index (LLaDA)
< AN < | tenees -

Y A E—— | g, of each token

i 2 3 4 5 6 7 8 9 Y12 3 4 5 6 7 8 9 5 | ” H ‘
k k ._.C_. -1-

0 LLaDA - Global AR-ness Adapted DLM - Global AR-ness o—2 . .

' - | 10 2 200 300 400
x|SR ~ Code Token index (Dream)
CHP I © |- Math (b)

o o i e— Local AR-ness ‘ Global AR-ness
- 051 | - !
£02{ =~ Code |7 7| === [M] love dogs and [M] | [M] love dogs and [M]
< ---- Math |< ol
0.0 0.0 [M] love dogs and cats | _I love dogs and [M]
i 2 3 4 Rt 2 3 4 |
k K (unmask next token) ' (unmask first mask)

Figure 3: Left: Local and global AR-ness across different models and data modalities. Adapted
dLLM refers to Dream for the math task and DiffuCoder (Stage 1 trained with 65B tokens) for the
code task. Right: (a) Confidence score for each position in the dLLM’s first forward decoding step.
(b) Local AR-ness@k: the fraction of decoding steps where the newly unmasked token, together with
the k£ immediately preceding predicted tokens, forms a strictly increasing consecutive sequence, at
k = 1 for next-token prediction. Global AR-ness@k: the fraction of decoding steps where the model
chooses to unmask one of the earliest k positions among all remaining masked tokens.

Stage 1 - Local AR-ness Stage 2 - Local AR-ness
Stage2(168)

-~ Stage2(658)

Stage 3 - Local AR-ness Post Training - Local AR-ness

g
o
g
o

-
o

o
®

AR-ness@k
)
[
AR-ness@k
AR-ness@k

Stagel(65B) 0.6 0.8] —— Stage3(lep) 208 — Instruct Model
-- Stagel(700B) (< | T -- Stage3(5ep) < ----Instruct+GRPO
0 1 2 3 4 5 6 7 8 9 04 1 2 3 4 5 6 7 8 9 07 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
k k k k
Stage 1 - Global AR-ness 1.0 Stage 2 - Global AR-ness 1.0

Stage 3 - Global AR-ness Post Training - Global AR-ness

-
o

AR-ness@k
)
[

AR-ness@k
AR-ness@k

Stagel(65B) Stage2(16B) 0.8 —— Stage3(lep) —— Instruct Model

-- Stagel(700B) 0.6 ---- Stage2(65B) -- Stage3(5ep) == Instruct+GRPO

o 1 2 3 4 1 2 3 4 o 1 2 3 4 0 1 2 3 4
k k k k

Figure 4: AR-ness drifts on different training stages. Left: adaptation pre-training stage and mid-
training stage. Right: instruction tuning and RL post-training stage.

Global: Earliest Mask Selection In step ¢, if the predicted token lies in the first £ masked positions,
the global AR-ness is scored. Global AR-ness@F is the averaged ratio for each ¢, and it measures the
tendency to always unmask the earliest remaining token, capturing a left-to-right filling strategy. This
ratio grows with k, since the criterion becomes easier to satisfy as more early positions are allowed.
For the two metrics, the higher value indicates that the generation is more autoregressive. Detailed
formulations are listed in Appx.

4.2 DECODING ANALYSIS

We conduct AR-ness comparisons during conditional generation between: (1) different dLLMs,
including LLaDA trained from scratch and Dream or DiffuCoder adapted from AR LLMs; (2)
different data modalities, including math and code; and (3) different training stages of DiffuCoder.
All inference settings are based on the low-confidence remasking strategy (Chang et al., 2022

with the same sequence length and diffusion timesteps (512). Math is evaluated on GSM8K using
8-shots (Cobbe et al., 2021), and code is evaluated using zero-shot HumanEval.

How do dLLMs decode differently from AR models? For AR decoding, both local and global
AR-ness are identically equal to 1 (i.e., 100% AR). In contrast, as illustrated in Figure 3, dLLMs do
not always decode in a purely AR manner. A significant fraction of tokens in dLLM decoding are
recovered from neither the leftmost masked token nor the next token. This observation indicates that
dLLMs adopt a more flexible decoding order compared to regular AR models. Nevertheless, both local
and global AR-ness are closer to 1 than 0, demonstrating that text data inherently exhibit some AR
structure, which diffusion-based LMs, regardless of whether they are trained from scratch or adapted
from AR models, naturally capture. Empirically, adapted dLL.Ms tend to exhibit stronger AR-ness

than those trained from scratch. This is because they inherit the left-to-right token dependencies from
the original AR training. Lower AR-ness opens up additional opportunities for parallel generation by
breaking this dependency (Appx. C.3). Higher AR-ness can also be beneficial; for example, LLaDA
often needs to resort to semi-AR (block-wise decoding; Arriola et al., 2025) generation to achieve
higher overall performance. In that setting, the block decoder explicitly reintroduces causal bias into
the generation process. In DiffuCoder, we argue that the model can decide how causal it is during
generation by itself.

How do different data modalities affect the decoding paradigm? According to Figure 3, although
math and code decoding exhibit different degrees of local AR-ness, a consistent finding is that code
generation has a lower mean and higher variance in global AR-ness. This indicates that when
generating code, the model tends to produce later tokens first, leaving some early masked tokens
un-recovered until much later (Appx. C.2). The reason might be that mathematical text is essentially
sequential and usually requires left-to-right computation, whereas code has an intrinsic structure.
Consequently, the model often plans token generation more globally, much like a programmer
jumping back and forth through code to refine a code implementation.

How does AR-ness change at different training stages? In Figure 4 (Stage 1), after training with
65B tokens, we already observe a relatively low AR-ness. However, when we extend the training to
700B tokens, AR-ness increases while overall performance drops (see the table in Appx.). We
suspect that the quality of the pre-training data limits performance. Consequently, we choose the
Stage 1 65B model as the starting point for Stage 2. During mid-training (Stage 2) and instruction
tuning (Stage 3), on the first epoch of high-quality data, the model learns a high causal bias. As it sees
more tokens, however, task performance improves (Appx. B.1), while the measured AR-ness starts to
decline. This pattern implies that after the first epoch, dLLMs begin to capture dependencies beyond
a pure AR order. After GRPO training, the model’s global AR-ness also decreases and meanwhile
shows less of a performance drop when decoding in half as many steps (Figure 1(c); Appx. C.3).

Entropy Sink When dLLMs perform conditional generation, the first diffusion step starts with a
fully masked completion given a prefix prompt and attempts to recover the completion sequence. At
this step, we record the confidence score of each recovered token in Figure 3(a). Appx. also lists
the entropy heatmap across all decoding timesteps. The default decoding algorithm from LLaDA
and Dream selects the token with the highest confidence while remasking the rest. LLaDA uses
log probabilities while Dream uses negative entropy to measure confidence, where a larger value
indicates that the model is highly confident about that token.

Remarkably, the resulting distribution displays a characteristic “L’-shaped pattern. We refer to this
phenomenon as the entropy sink. We hypothesize that the entropy sink arises because the intrinsic
nature of text biases the model toward tokens that lie immediately to the right of the given prefix:
those positions receive stronger positional signals and closer context, leading the model to assign
them disproportionately high confidence. This phenomenon may be related to the cause of the
attention sink (Gu et al., 2024; Xiao et al., 2024), but its underlying cause requires further analysis
and verification. This entropy bias toward locally adjacent tokens explains why dLLM:s still maintain
a non-trivial level of AR-ness.

Base Model - Local AR-ness Instruct Model - Local AR-ness

Humaneval & Humaneval+ MBPP & MBPP+

-
o
-
o

Temp=0.2
-- Temp=1.0

Temp=0.2 60
-- Temp=1.0

)
@
)
@

AR-ness@k
AR-ness@k

Rso = 2 -
0537 5 6 7 8 § 1T 32 3 4 5 & 7 8 9 > Temp=0.0 750 Temp=0.0
K Kk ®a0 Temp=0.2 _— ® Temp=0.2
Base Model - Global AR-ness Instruct Model - Global AR-ness a —— Temp=0.5 ﬁ 240 —— Temp=0.5
10 10 Sl 5 Temp=0.7 g Temp=0.7
® ® —— _ 30 —— _
8 | T @ Temp=0.2 20 Temp=1.0 Temp=1.0
2os Temp=02 gos ---- Temp=1.0 —— Temp=1.2 20 —— Temp=1.2
% LS 10 —— Temp=1.5 —— Temp=1.5

-- Temp=1.0 a

14
o
I3

1 2 3 a4 1 2 3 4

12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
K K k k

Figure 5: Affects of different sampling temperatures. Left: For base model and instruct model,
changing temperature affects the AR-ness on HumanEval. Right: pass @k curves are different for
different temperatures, where triangles refer to score for plus version of each task.

4.3 GENERATION DIVERSITY 878 92,9860

79.9

]

o
o
-

7

=3
>

67.1

60.4
552 0

50.0
Temp=0.2 (Pass@1)
Temp=1.0 (Pass@1)
Temp=1.0 (Pass@10)
Temp=1.2 (Pass@1)

3
g

Post-training studies on AR LLMs (Yue et al., 2025) show
that an RL model’s reasoning paths are bounded by the
base model’s pass@k sampling capabilities. Therefore,

N

N

s

N
o

Pass Rate (%)

N
=]

o
&
7

NN

we examine generation diversity with pass@Fk accuracy o =12 Pl 7
. Base Base Instruct Instruct
in dLLMs. As Figure 5 (right) and Figure 6 illustrate, HumanEval HumanEval+ HumanEval HumanEval+

for both the base and instruct versions of DiffuCoder, a

low temperature yields high pass@1 but little growth in Figure 6: Pass@£k scores for different
pass@k, indicating that the samples lack diversity. By models and temperatures.

increasing the temperature to a suitable range (e.g., 1.0

to 1.2), pass@Fk rises significantly, revealing a latent capability in the model. In many RL set-
tings (Bercovich et al., 2025; Liu et al., 2025a), the model must be able to sample diverse responses
during rollouts before RL can reinforce pass@1 accuracy. The promising pass @k curves of Diffu-
Coder indicate substantial room for improvement through RL, motivating the design of our coupled-
GRPO algorithm (§5). Moreover, a higher temperature also substantially lowers AR-ness, as shown
in Figure 5 (left) and Figure 1(a), meaning the model generates tokens in a more random order, which
operates differently from AR models. In AR models, temperature only affects token selection,
while in dLLMs it influences both token selection and their generated order. A visualization of
the decoding process from real samples is provided in Appx.

5 CoUPLED-GRPO

Reinforcement learning (RL) and GRPO (Shao et al., 2024) have proven critical for enhancing AR
models (Bercovich et al., 2025; Shao et al., 2025), but their application to dLLMs is less explored.
As discussed in §2.3, formulating the mask diffusion process as a Markov Decision Process allows
for a policy optimization approach akin to PPO (Schulman et al., 2017). To facilitate integration
with GRPO (Shao et al., 2024), the approximation of token probabilities within diffusion models is
necessary. Current masked diffusion models rely on Monte Carlo sampling (Zhu et al., 2025; Shi
et al., 2024) for log-probability estimation. Specifically, the negative log-likelihood (NLL) is bounded
by the ELBO, i.e., P; = Eiu1 . 72, ~q(a:|a0) Lt (X¢)], Where Ly is the cross-entropy loss introduced
in Eq. (1). However, Monte Carlo sampling introduces significant overhead during the training of
GRPO, as highlighted by d1 (Zhao et al., 2025).

Baseline methods To overcome this, d1 chooses to mask all completion tokens and perform a
single forward pass to compute each token’s probability, which is equivalent to sampling once
at diffusion step t = T'; we call this sequence of log-probabilities P;, with each element being
log g (0¥ |c, of = m). Thus, GRPO’s update in Eq. (3) uses the ratio p¥ = % d1 also
old i Ui T
randomly masks p = 15% of the condition tokens to increase sampling diversity, which, in practice,
makes the completion-token probability estimates unreliable. In our code experiments, masking
condition tokens does not yield a stable reward improvement (Figure 7), probably because code
tasks demand higher token-level generation accuracy than math tasks. As a result, we revert to the
completion full mask version (p = 0%) and use P;—7 as our baseline. Even so, this baseline is biased:
as shown in our entropy sink analysis (§4.2), high-entropy tokens tend to lie on the left side, so RL
training still ends up updating early tokens more aggressively.

Coupled-GRPO In the £; computation, only the loss for positions involving masked tokens is
counted, which introduces inefficiency and variance when sampling times are limited. To improve
probability estimation while still covering every token, we introduce a coupled-sampling scheme
(Figure 2). Concretely, we pick \ timestep pairs (¢, %) with t+# = T, then sample two complementary
completion masks: each mask hides part of the tokens, and together they cover all completion tokens.
In other words, every token is unmasked in exactly one of the two forward passes. This design
guarantees that (1) each token’s log-probability is computed at least once (giving each token a
non-zero learning signal) and (2) these log-probability estimations are more accurate because every
token is evaluated under a realistic partial-masking context rather than always being masked, and we

have 2\ additional samples compared to the baseline. Combining Egs. (1), (2), and (3), we have:

G ol

k k k k

. Te(0;5 |C, Of . Te(0;5 |C, Of

jGRpo(e) = E[Z Z mm(—(Il ’I:<T) Ai, Chp(—(Il ’I:<T)) 1-— g, 1 + 6)141) — ﬁDKL])
im1 k—1 To1a (Oi |C7 Oi,t<T) To1a (Oi |C, 0i,t<T)

A k
. . , 1
with log 7r@(0f|c7 of,t<T) = 7[Z [Li(xe) + Li(xg)] + Lr(TT)| 5 Sty + Ozpom = 1. 4)

t4i=T 4

In practice, we choose A = 1. For a fair comparison, we introduce a de-coupled baseline with the same
number of samples but without the complementary constraint. For advantage score computation, we
also consider leave-one-out (LOO) strategies (Ahmadian et al., 2024; Kool et al., 2019) to determine
the baseline score: A; = (0;) — 5 ZJC;Z r(0;), which creates an unbiased estimate. We show that
our coupled-sampling scheme can be viewed as an application of the Antithetic Variates (Hammersley
& Mauldon, 1956) variance reduction technique in Appx. , where we also list detailed designs
for verified rewards, including a code format reward and the execution pass rate over test cases as a
correctness reward.

2.0 2.0 2.00
15 /\’/JM\ 1.75
1.5
-r?: % % 1.50
£10 Z 5 W
(] [)
< d1 (p=0.15) T1.0 o a1.25 e
0.5 Full mask (p=0) Couple 1.00 oupled temp=1.
—— Coupled GRPO —— de-Coupled —— Coupled temp=1.0
0.75
00 0.0 0.2 0.4 0.6 0.8 1.0 0.5 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Training Epoch Training Epoch Training Epoch

Figure 7: Reward curves during GRPO training. Left: Comparison between coupled GRPO and
dl1 baselines. Middle: Decoupled GRPO uses the same number of samplings but with randomly
sampled mask noise. Right: Coupled-GRPO is sensitive to the rollout temperature.

HumanEval MBPP BigCodeBench (C) BigCodeBench (I)
Model - Plus - Plus Full Hard Full Hard
Qwen2.5-Coder+SFT 82.9 75.6 80.1 66.1 46.9 16.2 39.5 14.9
+ GRPO 80.524 75.0-06 84.4+43 T72.8+7 49.7+28 16.200 40.0+05 10.2-47
DiffuCoder-Instruct 72.0 65.2 75.1 61.9 35.7 12.2 34.0 8.8
+ coupled GRPO 73.2+12 68.3:3.1 78.6435 67.5+506 404447 10.8-14 37.5:5 10.8+20

+ coupled GRPO (LOO) 70.7-13 62230 79.6+45 68.5+66 41.2+55 13.5+13 37.6+36 12.8+4.0

w. full mask completion 66.5-55 59.1-61 77.0+1.9 65.1+32 38.0:23 8.8-34 35.6+1.6 13.5+47
w. decoupled sampling 68.9-3.1 62.824 783:32 66.4+45 40.4+47 10.8-14 36.5+25 10.8+20

Table 2: Evaluation results for GRPO post-training across multiple benchmarks and models. We
report the best results from the sampling temperature set {0.2,0.3,0.4}.

Experiment Results Table 2, together with Figure 7, demonstrates the effectiveness of coupled-
GRPO training. In contrast, the baseline variants: d1, full-mask completion, and decoupled sampling,
exhibit unstable reward learning. The rollout sampling temperature is also critical: as shown in
Figure 6, DiffuCoder-Instruct attains a higher pass@ 10 at temperature 1.2 than at 1.0, mirroring the
trend observed during coupled-GRPO training. Notably, RL fine-tuning shifts the optimal sampling
temperature from 0.2 to a larger value, such as 0.3 or 0.4, during evaluation, indicating that training
sharpens the per-token distribution. This finding aligns with recent results for AR LLMs (Cui et al.,
2025; Liu et al., 2025a; Agarwal et al., 2025), suggesting that the approaches proposed in these
works may also be generalizable to dLLMs. Finally, at the new optimal temperature, global decoding
AR-ness decreases, as shown in Figure 4 (right). A more interesting finding is that, as shown in
Figure 1(c), when we use 0.5x fewer decoding steps (equivalent to a 2x generation speedup),
training with coupled-GRPO results in a smaller performance drop compared to the model before
training, suggesting that AR-ness is reduced and parallelism is increased (Wu et al., 2025). Detailed
discussions are provided in Appx. and Appx.

6 RELATED WORK

Text Diffusion Models Early explorations of text diffusion models were based on a continuous
space (Li et al., 2022; Gong et al., 2023b; Chen et al., 2023). Subsequently, discrete diffusion mod-
els (Hoogeboom et al., 2021; Austin et al., 2021a) directly introduced discrete noise to accommodate
the discrete nature of text, demonstrating significant potential (Zheng et al., 2024; Lou et al., 2024)
and were further developed into mask diffusion models (Shi et al., 2024; Ou et al., 2024; Sahoo
et al., 2024). Recent work has explored scaling these models significantly, with DiffuLLaMA (Gong
et al., 2025) being adapted from pretrained AR LLMs, and LLaDA (Nie et al., 2024) and Dream (Ye
et al., 2025) being the first open-source diffusion LLMs to achieve performance comparable to AR
LLMs. Block diffusion (Arriola et al., 2025) proposes a hybrid approach that applies diffusion within
each block (Han et al., 2023), serving as a midpoint between autoregressive and diffusion models.
Multimodal models such as LaViDa (Li et al., 2025), MMaDA (Yang et al., 2025), and Dimple (Yu
et al., 2025) combine text diffusion models with vision models. Liu et al. (2025b); Hu et al. (2025);
Ma et al. (2025); Wu et al. (2025); Sahoo et al. (2025) introduce caching and parallel decoding
algorithms for dLLMs, significantly improving inference efficiency.

Code Generation Code generation is a crucial domain for LLMs (Roziere et al., 2023; Sun et al.,
2024), exemplified by state-of-the-art open-source models like Qwen-2.5-Coder (Hui et al., 2024)
and OpenCoder (Huang et al., 2024), with wide applications in areas such as coding assistants
and agents (Xu et al., 2024). CodeFusion (Singh et al., 2023) was the first to combine diffusion
models with code generation, but it was limited to small-scale models and simple tasks. Recent
commercial-scale dLLMs, such as Mercury (Inception Labs et al., 2025) and Gemini (DeepMind,
2025), have demonstrated that diffusion-based code generators can achieve performance comparable
to leading autoregressive code models while offering significantly faster generation speeds.

Reinforcement Learning Reinforcement learning with verifiable reward (RLVR) using
GRPO (Shao et al., 2024; OpenR 1, 2025; Guo et al., 2025; Bercovich et al., 2025) is highly effective
in enhancing a language model’s math reasoning (Shao et al., 2025) and code generation abilities (Xie
et al., 2025). Wang et al. (2025) show the importance of mid-training during RL scaling. Combining
RL and diffusion models, VRPO (Zhu et al., 2025) introduces the efficient sampling algorithm from
DPO (Rafailov et al., 2023) for dLLMs. d1 (Zhao et al., 2025) and MMaDA (Yang et al., 2025)
optimize math reasoning in dLLMs using GRPO, but they rely heavily on block diffusion decoding
during rollout and evaluation. LLadDou (Huang et al., 2025) trains an additional module to predict
the rank score of tokens. For small text diffusion models, Zhang et al. (2025) propose the target
concrete score matching framework, and Zekri & Boullé (2025) introduces score entropy policy
optimization (SEPO). Earlier, DDPO (Black et al., 2024) and DPPO (Ren et al., 2025) formulated the
diffusion process as a Markov Decision Process and performed policy optimization for continuous
diffusion models.

7 CONCLUSION

In this work, we present DiffuCoder, a 7B-scale open-source diffusion model for code with strong
performance, and its complete training recipe. We also present a comprehensive analysis of dLLMs for
code generation. Our investigation into their decoding patterns reveals fundamental differences from
AR models; notably, sampling temperature affects not only token selection but also the generation
order, creating rich sample diversity for optimization. Capitalizing on this, we introduce coupled-
GRPO, a reinforcement learning algorithm that respects the non-autoregressive nature of dLLMs. By
using a novel coupled-sampling strategy, our method provides a more accurate likelihood estimation.
Coupled-GRPO significantly boosts DiffuCoder’s performance, demonstrating the effectiveness of
RL methods aligned with diffusion principles. Our work provides the community with a deeper
understanding of dLLMs and lays a strong foundation for future explorations of dLLMs in complex
reasoning and generation tasks.

ACKNOWLEDGMENTS

We thank the following researchers for their stimulating discussions and valuable suggestions dur-
ing the preparation of this manuscript: Shivam Agarwal from the University of Illinois Urbana-

10

Champaign; Wenhao Chai from Princeton University; Richard Bai from Apple; Lin Zheng, Chenxin
An and Zhihui Xie from the University of Hong Kong.

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in 1lm reasoning. ArXiv preprint, abs/2505.15134, 2025. URL
https://arxiv.org/abs/2505.15134.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. ArXiv preprint, abs/2402.14740, 2024. URL https:
//arxiv.org/abs/2402.14740.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
scaling reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurlPS 2021, December 6-14, 2021, virtual,
pp- 17981-17993, 2021a. URL https://proceedings.neurips.cc/paper/2021/
hash/958c530554£78bcd8e97125b70e6973d-Abstract.html.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. ArXiv preprint, abs/2108.07732, 2021b. URL https://arxiv.org/abs/2108.
07732.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
ArXiv preprint, abs/2505.00949, 2025. URL https://arxiv.org/abs/2505.00949.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=YCWjhGrJFD.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 11305-11315. IEEE, 2022. doi: 10.
1109/CVPR52688.2022.01103. URL https://doi.org/10.1109/CVPR52688.2022.
01103.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374,2021. URL https://arxiv.
org/abs/2107.03374.

Ting Chen, Ruixiang Zhang, and Geoffrey E. Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=31it JRIQxFw.

11

https://arxiv.org/abs/2505.15134
https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2402.14740
https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/958c530554f78bcd8e97125b70e6973d-Abstract.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2505.00949
https://openreview.net/forum?id=YCWjhGrJFD
https://doi.org/10.1109/CVPR52688.2022.01103
https://doi.org/10.1109/CVPR52688.2022.01103
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/pdf?id=3itjR9QxFw

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. ArXiv preprint, abs/2110.14168, 2021. URL https://arxiv.org/
abs/2110.14168.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. ArXiv preprint, abs/2505.22617, 2025. URL https://arxiv.
org/abs/2505.22617.

DeepMind. Gemini diffusion. 2025. URL https://deepmind.google/models/
gemini-diffusion/.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq-v2: Bridging
discrete and continuous text spaces for accelerated Seq2Seq diffusion models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 9868-9875, Singapore, 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.660. URL https://aclanthology.org/2023.
findings—-emnlp.660.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b.
URL https://openreview.net/pdf?id=jQj—_rLVXs.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In The Thirteenth International Conference on
Learning Representations, 2025.

Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
Min Lin. When attention sink emerges in language models: An empirical view. ArXiv preprint,
abs/2410.10781, 2024. URL https://arxiv.org/abs/2410.10781.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. ArXiv preprint, abs/2501.12948, 2025. URL https://arxiv.
org/abs/2501.12948.

John Michael Hammersley and James G Mauldon. General principles of antithetic variates. In
Mathematical proceedings of the Cambridge philosophical society, volume 52, pp. 476-481.
Cambridge University Press, 1956.

John Michael Hammersley and Keith William Morton. A new monte carlo technique: antithetic
variates. In Mathematical proceedings of the Cambridge philosophical society, volume 52, pp.
449-475. Cambridge University Press, 1956.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 11575-11596, Toronto, Canada,
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.647. URL
https://aclanthology.org/2023.acl-long.647.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4cbbcfec8584af0d967£f1abl0179cadb—-Abstract.html.

12

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2505.22617
https://arxiv.org/abs/2505.22617
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://aclanthology.org/2023.findings-emnlp.660
https://aclanthology.org/2023.findings-emnlp.660
https://openreview.net/pdf?id=jQj-_rLVXsj
https://arxiv.org/abs/2410.10781
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2023.acl-long.647
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
12454-12465, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
67d96d458abdef21792e6d8e590244e7-Abstract.html.

Zhangiu Hu, Jian Meng, Yash Akhauri, Mohamed S. Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. ArXiv preprint, abs/2505.21467, 2025. URL https://arxiv.org/abs/2505.
21467.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
JH Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier code
large language models. ArXiv preprint, abs/2411.04905, 2024. URL https://arxiv.org/
abs/2411.04905.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. ArXiv preprint, abs/2505.10446, 2025.
URL https://arxiv.org/abs/2505.10446.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. ArXiv preprint, abs/2409.12186,
2024. URL https://arxiv.org/abs/2409.12186.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
Volodymyr Kuleshov. Mercury: Ultra-fast language models based on diffusion. 2025. URL
https://inceptionlabs.ai.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
DeepRLStructPred Workshop ICLR, 2019.

Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
model for multimodal understanding. ArXiv preprint, abs/2505.16839, 2025. URL https:
//arxiv.org/abs/2505.168309.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto.
Diffusion-Im improves controllable text generation. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
1bebbc25d50895ee656b8c2d9%eb89dba—-Abstract-Conference.html.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
43e9d647ccd3ed4b7b5baab53£0368686—-Abstract—-Conference.html.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
ArXiv preprint, abs/2505.24864, 2025a. URL https://arxiv.org/abs/2505.24864.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching,
2025b. URL https://github.com/maomaocun/dLLM-cache.

13

https://proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html
https://arxiv.org/abs/2505.21467
https://arxiv.org/abs/2505.21467
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2505.10446
https://arxiv.org/abs/2409.12186
https://inceptionlabs.ai
https://arxiv.org/abs/2505.16839
https://arxiv.org/abs/2505.16839
http://papers.nips.cc/paper_files/paper/2022/hash/1be5bc25d50895ee656b8c2d9eb89d6a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1be5bc25d50895ee656b8c2d9eb89d6a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://arxiv.org/abs/2505.24864
https://github.com/maomaocun/dLLM-cache

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei
Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl synergy.
ArXiv preprint, abs/2506.13284, 2025c. URL https://arxiv.org/abs/2506.13284.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. In International Conference on Machine Learning, ICML, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. ArXiv preprint, abs/2402.19173, 2024. URL https://arxiv.org/abs/
2402.19173.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. ArXiv preprint, abs/2505.15781, 2025. URL https://arxiv.org/abs/
2505.15781.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. ArXiv preprint, abs/2410.18514, 2024. URL
https://arxiv.org/abs/2410.18514.

OpenAl. Gpt-4 technical report. ArXiv preprint, abs/2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Hugging Face OpenR1. Open rl: A fully open reproduction of deepseek-r1, 2025. URL https:
//github.com/huggingface/open—-rl.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. ArXiv
preprint, abs/2406.03736, 2024. URL https://arxiv.org/abs/2406.03736.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
Colin A. Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting
the web for the finest text data at scale. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/370df50ccfdf8bdel8£f8f9c2d9151bda—-Abstract-Datasets_and__
Benchmarks_Track.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. In
International Conference on Learning Representations, ICLR, 2025.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code.
ArXiv preprint, abs/2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

Subham S. Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T.
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffu-
sion language models. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurlPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
eb0bl3ccb15724ab8015bc978fddel0ad-Abstract-Conference.html.

14

https://arxiv.org/abs/2506.13284
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2505.15781
https://arxiv.org/abs/2505.15781
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2406.03736
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2308.12950
http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/eb0b13cc515724ab8015bc978fdde0ad-Abstract-Conference.html

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv preprint, abs/1707.06347,2017. URL https://arxiv.org/
abs/1707.06347.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Si-
mon Shaolei Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov,
Hannaneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer. Spurious rewards:
Rethinking training signals in rlvr. https://rethink-rlvr.notion.site/
Spurious—-Rewards—Rethinking-Training-Signals—in-RLVR, 2025. Notion
Blog.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. ArXiv preprint, abs/2402.03300, 2024. URL https:
//arxiv.org/abs/2402.03300.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified
and generalized masked diffusion for discrete data. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
bad233b9849f019%aeadbebcc60cef70f-Abstract-Conference.html.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
CodeFusion: A pre-trained diffusion model for code generation. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 11697-11708, Singapore, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.716. URL https://aclanthology.org/
2023 .emnlp-main.716.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=PxTIGI12RRHS.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023. URL https:
//arxiv.org/abs/2302.13971.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Revisiting mid-training in the
era of rl scaling. https://tinyurl.com/OctoThinker, 2025. Notion Blog.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. ArXiv preprint, abs/2505.22618, 2025. URL https://arxiv.org/
abs/2505.22618.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

15

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/bad233b9849f019aead5e5cc60cef70f-Abstract-Conference.html
https://aclanthology.org/2023.emnlp-main.716
https://aclanthology.org/2023.emnlp-main.716
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://tinyurl.com/OctoThinker
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.22618
https://openreview.net/forum?id=NG7sS51zVF

Zhihui Xie, Liyu Chen, Weichao Mao, Jingjing Xu, Lingpeng Kong, et al. Teaching language
models to critique via reinforcement learning. ArXiv preprint, abs/2502.03492, 2025. URL
https://arxiv.org/abs/2502.03492.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou,
Yitao Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming
Xiong, and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
hNhwSmt XRh.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. ArXiv preprint, abs/2505.15809, 2025. URL
https://arxiv.org/abs/2505.158009.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning, 2024a. URL
https://arxiv.org/abs/2410.14157.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Zhenguo
Li, Wei Bi, and Lingpeng Kong. Diffusion of thoughts: Chain-of-thought reasoning in diffusion
language models. ArXiv preprint, abs/2402.07754, 2024b. URL https://arxiv.org/abs/
2402.07754.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding. ArXiv preprint, abs/2505.16990, 2025. URL https://arxiv.
org/abs/2505.16990.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? ArXiv
preprint, abs/2504.13837, 2025. URL https://arxiv.org/abs/2504.13837.

Oussama Zekri and Nicolas Boullé. Fine-tuning discrete diffusion models with policy gradient
methods. ArXiv preprint, abs/2502.01384, 2025. URL https://arxiv.org/abs/2502.
01384.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder 1l via automated test-case synthesis. ArXiv preprint, abs/2502.01718, 2025. URL
https://arxiv.org/abs/2502.01718.

Ruixiang Zhang, Shuangfei Zhai, Yizhe Zhang, James Thornton, Zijing Ou, Joshua Susskind, and
Navdeep Jaitly. Target concrete score matching: A holistic framework for discrete diffusion. ArXiv
preprint, abs/2504.16431, 2025. URL https://arxiv.org/abs/2504.16431.

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Joshua M. Susskind, and Navdeep Jaitly.
PLANNER: generating diversified paragraph via latent language diffusion model. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
fdbab5e0a9%b57fce03e89cclOcadla24e9-Abstract—-Conference.html.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. ArXiv preprint, abs/2504.12216, 2025. URL
https://arxiv.org/abs/2504.12216.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences
on scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848-3860, 2023. ISSN
2150-8097. doi: 10.14778/3611540.3611569.

16

https://arxiv.org/abs/2502.03492
https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=hNhwSmtXRh
https://arxiv.org/abs/2505.15809
https://arxiv.org/abs/2410.14157
https://arxiv.org/abs/2402.07754
https://arxiv.org/abs/2402.07754
https://hkunlp.github.io/blog/2025/dream
https://arxiv.org/abs/2505.16990
https://arxiv.org/abs/2505.16990
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2502.01384
https://arxiv.org/abs/2502.01384
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2504.16431
http://papers.nips.cc/paper_files/paper/2023/hash/fdba5e0a9b57fce03e89cc0cad0a24e9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/fdba5e0a9b57fce03e89cc0cad0a24e9-Abstract-Conference.html
https://arxiv.org/abs/2504.12216

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. In Conferenec on Language Modeling, COLM, October 7-9, 2024, Philadelphia,
PA, 2024.

Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei Liu. Programming every example:
Lifting pre-training data quality like experts at scale. ArXiv preprint, abs/2409.17115, 2024. URL
https://arxiv.org/abs/2409.17115.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models. ArXiv preprint, abs/2505.19223, 2025. URL
https://arxiv.org/abs/2505.19223.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. ArXiv preprint, abs/2406.15877,
2024. URL https://arxiv.org/abs/2406.15877.

17

https://arxiv.org/abs/2409.17115
https://arxiv.org/abs/2505.19223
https://arxiv.org/abs/2406.15877

A PROBLEM FORMULATION

A.1 MASK DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021) contain a forward process that gradually
corrupts data €y ~ Pgata(To) into noisy variables ;.7 through q(x1.7|xo) = H?:l q(x|xi—),
and a backward process that models the joint probability as pg(xo.7) = pe(xT) H;‘F:l po(@i—1|xt),

denoising x; to reconstruct . The parameters 6 are learned by minimizing the negative log-
likelihood via the evidence lower bound (ELBO):

—logpe(xo) < Ey(a,|z0) [~ logpe(olx1)] + Dxr(q(xr|20)||Ipe(2T)) + LT, (5
T

with L7 = ZEq(mt\mo)[DKL(Q(wt—ﬂwn xo)||pe(Ti—1]t))]. (6)
t—2

Hoogeboom et al. (2021); Austin et al. (2021a) first proposed discrete diffusion models, where they
define the forward process with a categorical distribution q(z;|z;_1) = Cat(x; Q] =;_1), where
x; € {0,1}X is a one-hot vector of vocabulary size K, and Q; € [0, 1]%* X is the transition matrix.
A special case is absorbing discrete diffusion, where Q; = (1 — 3;)I + B;1m ', with 1 being an
all-ones vector of size K and m the one-hot encoding of a special [MASK] token. Starting from x,
the ¢-step marginal distribution is q(x:|zo) = Cat(zs; p = Q, xo), where the cumulative product is
Q, = Hle Qi=ai+(1—a)lm’,and oy = Hle(l — B¢). We expect a to approach 0 such
that the fully noised data 1 equals m with probability 1.

For any two arbitrary time points 0 < s < ¢t < 1, the transition distribution between them is
- — ——1= .

q(mi]xs) = Cat(zs; Q) s), where Qg = Q, Qp = 2:1+ (1 — 2t)1m . This allows us to

compute the transition probability between any two timesteps using the ratio of their alpha values:

1-(1—as) _ 1—ay 1 Qs—ar if _ _
Ti|T Ts|T —or T 1oy o ey =xTrs =m,
q(ws|$t,wo) _ Q(t| s)Q(s| 0) _ 11_%,,)'% 1a » 1—oy . 7)
q(x¢|xo) T — = Gk if x; = m # x,.
g — @ 1— a;
Po(@s|ze) = T~ fol@i) + 1= ®)
=% Dy (xol| fo(xt)), for xy = m;
D s 5 s = 1=ay ’ ' 9
kua(@s 2, 20) 190 (2] |20)) {0’ o ®)
Thus,
) Qg — O T
Lr = E — Sm.mX] JAVIR 10
T [(t—S)(l _Olt) ts wO nge(wt) t] ()

t=2
where 0, m is the indicator function, and fp(a;) represents the logits of the tokens. In the continuous
time limit where 7" — oo, we set a small timestep A; =t — s = l € (0,1). The sum over timesteps
becomes an integral, and we have a; = “t=>=. Following the noise schedule a; = 1 — ¢, which is
Wldely adopted by Shi et al. (2024); Sahoo u al. (2024); Lou et al. (2024); Ou et al. (2024), we get
1_:2:15 = ;. This can be substituted into Eq. (0), yielding the final ELBO at a sampled time ¢ as a
weighted cross-entropy loss:

1
Lo = By(afzo) Zémnmwo log fo(@t)n | - (11

n=1
A.2 GENERATION AUTOREGRESSIVE-NESS

We formally define local and global autoregressiveness (AR-ness) here.

Problem Setup Inference for dLLMs often utilizes low-confidence remasking with the number
of diffusion timesteps set equal to the sequence length to ensure high performance. In this setting,
let the target sequence length be L, and at each diffusion decoding iteration ¢t = 1,...,T, the set
of still-masked positions just before step ¢ is M;_1 C {1,2,..., L}. We denote by p; € M;_; the
single position unmasked at step ¢, thereby producing the full decoding order {p1,...,pr}.

18

Local Autoregressive-ness: Contiguous Next-Token Prediction For any integer k£ > 1, define

Toout (£,) = 4 & if {pp-ithy ={p—i:i=1,... k},

ocanm 0, otherwise.
The Local AR-ness@F: is then computed as NTP@k = + Zthl Tjocal (t, k). Local AR-ness measures
the tendency to decode the immediate successor of a previously generated token, capturing sequential
continuity. It is non-increasing with k, as it becomes harder to maintain longer consecutive spans.

Global Autoregressive-ness: Earliest-First Mask Selection At step ¢, sort the masked positions

mil_)l < mEQ_)l << mgl_]\f‘_ll). Then

I (t, k) = 1, ifptE{mil_)l,...,ml(tli)l}7
globall® 0, otherwise.

The Global FMS-ratio@k is FMSQk = % Zthl Lgiobai(t, k). Global AR-ness measures the ten-

dency to always unmask the earliest remaining token, capturing a front-to-back filling strategy.

Together, these ratios reveal how the model behaves during generation. The ratio is non-decreasing

with k, as the criterion becomes easier to satisfy when more early positions are allowed.

A.3 CouPLED GRPO

In this section, we provide a detailed formulation of our Coupled GRPO algorithm. As discussed
in §5, we improve upon the baseline GRPO by introducing a coupled sampling scheme for more
accurate probability estimation. The complete Coupled GRPO algorithm is presented in Algorithm 1.

Probability Estimation with Coupled Sampling For a given completion sequence o of length L,
we select \ timestep pairs (¢,t) where t + ¢ = T'. For each pair, we create two complementary masks
M, and M; defined as binary vectors in {0, 1}, such that:

where V and A denote element-wise OR and AND, respectively, and 1,0 € {0, l}L are the all-ones
and all-zeros vectors. The probability estimation for token oF (also marked as x) is then computed
as:

1 A
moenoter) = 57| 2 [Gilen + L] + Lotar)] (13)
t+i=T

L is the loss term from Eq (1 1) at timestep ¢. In detail, we have £;(x;) = M, - % - CE(x¢, x) where
CE stands for the cross entropy loss.

Analysis The coupled sampling scheme provides several benefits: (i) Full Coverage: Each token
is guaranteed to be evaluated exactly once in each coupled pair, ensuring complete coverage of the
sequence. (ii) Reduced Variance: By evaluating each token under realistic partial-masking contexts,
we reduce the variance in probability estimates compared to full masking. (iii) Computational
Efficiency: The coupled sampling requires only two additional forward passes per update compared
to the d1 (Zhao et al., 2025) baseline when A = 1. The variance reduction can be formally quantified
in the next section, §

A.4 THEORETICAL ANALYSIS OF COUPLED-GRPO

In this section, we provide a formal analysis of the coupled sampling scheme used to estimate the per-
token log-probability proxies within our coupled-GRPO framework. GRPO requires stable estimates
of these per-token quantities to compute the importance sampling ratios for the policy gradient update.
We demonstrate that our coupled approach can be viewed as a direct and powerful application of the
Antithetic Variates (Hammersley & Morton, 1956; Hammersley & Mauldon, 1956) variance reduction
technique. We prove that it provides an unbiased estimator for the desired per-token quantity and,
critically, that it is guaranteed to reduce estimation variance.

19

Algorithm 1 Coupled GRPO: Policy Optimization with Coupled Sampling

1: Input: Reference model 7, ¢, condition set C, number of completions per condition G, code test
cases T, hyperparameters y, 5, and A = 1

2: Initialize my ¢ ey

3: while not converged do

4 update reference model .5 < my

5: forstep=1,...,1do

6: Told < T9

7 Sample a batch of condition C, ~ C

8 Sample G completions {0;}$; ~ moa(-|c), for each ¢ € C,

9 For each o;, compute reward r(o;) by execute test cases 7, of each ¢

10: Get advantage 4; = r(0;) — & Z]G:1 r(0j) or LOO A; =r(0;) — 5 EJG# r(0;)
11: for GRPO iteration j = 1,..., do

12: Randomly sample a timestep pair (;,%;) where t; +t; = T

13: Create complementary masks M, and MtAj for batch

14: Compute L, Egj and L

15: Compute coupled probability estimates in Eq (13) and importance ratios pf

16: Update 7y by gradient descent on Jgrpo Eq (4)

17: end for

18: end for

19: end while
20: return my

The core challenge is to obtain a stable estimate of a score for each token in a generated sequence,
where this score serves as a proxy for its log-probability. This score is defined as an expectation over
a random process involving a diffusion timestep ¢ and a mask M.

Assuming the linear noise schedule, the sampling process is as follows: A timestep ¢ is drawn
from a distribution on [0, 1], typically ¢ ~ U(0, 1). Different from §A.3 which formulates the loss
computation batch-wise, in this section we examine the token-wise formulation. Conditional on ¢, a
mask for each component in the sequence is sampled independently from a Bernoulli distribution
M, ~ Bernoulli(t),k=1,..., L.

For each token k in a sequence o, we define a per-token scoring function, g(t, M, k), which is
non-zero only if token & is masked:

1
g(t, M, k) = M- — - £(o"|c, 01-1), (14)
where /(-) is the cross-entropy loss for token o* given the condition ¢ and the unmasked context
01— - The quantity we wish to estimate for each token £ is its expected score:
v = B mrlg(t, M, k)] (15)

This estimated vy, is then used to compute the policy probability ratio mg /74 in the GRPO objective.

A.4.1 STANDARD VS. COUPLED MONTE CARLO ESTIMATORS

Standard MC Estimator. To estimate the vector of scores (vy,...,vr), one can draw 2N i.i.d.
pairs {(¢;, M;)}2%,. The estimator for each token k is:

| 2N
Vg, MC = N ;g(ti, M;, k). (16)

In any given sample 4, g(¢;, M;, k) is non-zero only for the subset of tokens k where M; ,, = 1. Many
samples are needed to obtain a reliable, non-zero estimate for all tokens.

Coupled (Antithetic) Estimator. Our coupled sampling method generates antithetic pairs. We draw
N pairs {(t;, M;)}Y_; and deterministically create their counterparts (£;, M;) = (1 — t;,1 — M;).

20

The antithetic variates (AV) estimator for vy, is:

o _izN:g(tivMiak)+g(fi,Mi,k)
k,AV — N

5 : (a7

i=1
A key structural property emerges here: for any given token k and sample ¢, exactly one of the

two terms in the inner sum is non-zero. This is because M; ;, and M;; = 1 — M, j, are binary
complements. This guarantees that every token receives a non-zero score contribution from every
coupled pair, ensuring full coverage and making the estimation process vastly more efficient.

A.4.2 PROOFS

Unbiasedness. We show that 9, av is an unbiased estimator of vy,.

Proof. The proof relies on showing that the joint probability distribution of (¢, M) is identical to that
of its antithetic counterpart (£, M). As proven in the previous version, under the symmetric sampling
scheme for ¢ and the dependent Bernoulli sampling for M, we have p(t, M) = p(t, M).

Since the random variables (¢, M) and (#, M) are identically distributed, the expectation of any
function of these variables is the same:

]E[g(tvak)] Z]E[Q(I?,M,k‘)] = Vg- (18)

By linearity of expectation, the expectation of the AV estimator is:

N N
N 1 PR 1
Eforav] = 5 ;(E[g(t“ M, k)] + Elg(fi, Mi, B)]) = 53 ;(vk +o) =vk. (19)
Thus, the coupled estimator is unbiased. O

Variance Reduction. = We now provide a direct and rigorous proof that the coupled estimator has
lower variance than the standard MC estimator.

Proof. The variance of the AV estimator for token k is given by:

Vo) = O MR Conl, 1,19, 06 . 8) 0

Variance is reduced if and only if the covariance term is negative. Let us analyze the covariance:

Consider the product term inside the first expectation:

g(t, M, k) - g(t, M, k) = (Mk - %e(. .)) : (Mk : %e(. .)) . (22)

The crucial insight is that the product of the mask indicators My, - M, is always zero, since My, =
1 — My, and Mj, is either O or 1. Therefore, the product of the scoring functions is identically zero for
all possible values of £ and M. This means its expectation is also zero:

Elg(t, M, k) - g(£, M, k)] = 0. (23)
Substituting this back into the covariance formula:
Cov(g(t, M. k), (£, M, k)) = 0 — (Elg(t, M. k)]) - (Elg(t, M, k))) (24)
= —Vg * Uk (25)
= —vi. (26)

Since the loss /(+) is non-negative, the scoring function g is non-negative. Its expectation, vy, must
therefore be non-negative. Assuming there is some configuration where a loss is incurred (i.e.,
vg > 0), we have:
y 2
Cov(g(t, M, k), g(t, M, k)) = —vi <0. 27)

21

The covariance is guaranteed to be negative. The variance reduction is therefore not just plausible but
a mathematical certainty of this estimation scheme. The amount of reduction is:

02 022 2
g g k k

J9 _ = Y% o, 28

59N 2N 2N~ (28)

Var(f)]“Mc) - Val'('[)k,AV) =

O

This result stems directly from the mutually exclusive nature of the estimators for a given token
within a coupled pair, a direct consequence of the complementary masks.

B IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

Adaptation pretraining During pre-training, we filter the code pre-training corpus from Re-
fineCode (Huang et al., 2024) and Stackv2 (Lozhkov et al., 2024). Since RefineCode only provides
each item’s index in Stackv2, we built a local index engine to download the raw data from Stackv2.
We also used text and math data from Fineweb (Penedo et al., 2024) and DCLM-pro (Zhou et al.,
2024). The final processed dataset contains around 400B tokens, as shown in Table 3. We adopted
the code-to-text ratio suggested in Qwen-2.5-Coder (Hui et al., 2024) and OpenCoder (Huang et al.,
2024). The training was conducted on 10 nodes of 8 HI00 GPUs each, using BF 16 and full-shard
FSDP (Zhao et al., 2023). The total wall-clock time for training on 65B tokens (100,000 global steps)
was approximately 40 hours. The single-GPU batch size was 2, and the context window was 4096.
Following LLaDA (Nie et al., 2024), we truncated 1% of the data to a random length to improve
handling of variable-length inputs. Additionally, for another 1% of the data, we used a random-length
prefix as the condition during the diffusion process, which was kept unnoised. We used the Adam
optimizer with a maximum learning rate of 2e—5, with a linear warmup of 20,000 steps followed by
a cosine decay schedule to 10% of its peak value at the end of training. The attention mask annealing
was performed over 10,000 steps, following DiffuLLaMA (Gong et al., 2025). In our experiments,
we observed that training on more tokens in Stage 1 did not improve performance on downstream
tasks (Table 4), nor did it lead to further improvements in Stage 2. Therefore, we used the model
trained with 65B tokens as our Stage 1 model. With a higher-quality pre-training corpus, we might
have reached different conclusions.

Source # tokens Sample weight Percentage
RefineCode from Stackv2 (code) 330B 1 78%
Fineweb code page (text) 55B 1 20%
DCLM subset (text) 33B 1 ’
Fineweb math page (math) 3B 3 2%

Table 3: Adaptation Training Data Recipes on Stage 1

Mid-training We used around 16B tokens of annealing code data (Huang et al., 2024) during
mid-training. This dataset contains an algorithmic corpus and synthetic data, such as high-quality
code snippets and code textbooks. This high-quality mid-training data significantly improves the
capacity of the base model, and we chose the model trained on 65B tokens (roughly 4 epochs over
the training data) as the final version of DiffuCoder Base. The training was carried out on 8 nodes
with 8 A100 GPUs each, using BF1 6 and full-shard FSDP (Zhao et al., 2023), which took 90 hours
of wall-clock time. We used the Adam optimizer with a maximum learning rate of 1e-5 and a linear
warmup of 2,000 steps. Other settings were the same as in Stage 1.

Instruction tuning We conducted classifier-free guidance SFT (Gong et al., 2023a; Nie et al., 2024;
Ye et al., 2024b) for DiffuCoder using 436K instruction tuning samples from OpenCoder (Huang et al.,
2024). The classifier-free guidance approach uses a conditional mask to prevent the diffusion process
from adding noise to the condition prefix. We used the same chat template as Qwen2.5-Coder (Hui
et al., 2024). We trained a new padding token that was used to pack each sample to a fixed length

22

Table 4: Raw results on coding tasks for LLMs and dLLMs in 7/8B scale. * denotes that the results
are collocated from public reports instead of evaluating by ourselves. BigCodeBench has completion
(C) and instruction (I) version of template during evaluation. +SFT means we conduct the same
instruction tuning with DiffuCoder-Instruct.

Model HumanEval MBPP BigCodeBench (C) BigCodeBench (I)
- Plus - Plus Full Hard Full Hard
Base Models
Qwen2.5-Coder 61.6 51.8 75.9 61.4 46.1 16.2 40.2 14.2
OpenCoder™ 66.5 634 799 704 405 9.5 - -
LLaDA 35.4 30.5 50.1 42.1 18.9 4.1 - -
Dream 56.7 50.0 68.7 57.4 23.6 4.1 - -
DiffuCoder (Stage 2 65B) 67.1 60.4 74.2 60.9 40.2 12.8 1.8 0.7
- Stage 1 65B 39.0 31.7 48.4 38.3 - - - -
- Stage 1 720B 31.1 23.3 38.8 31.3 - - - -
- Stage 2 16B 66.5 61.0 71.9 57.1 36.7 8.8 - -
Instruct Models
Qwen2.5-Coder-Instruct 90.2 85.4 83.9 72.0 50.7 21.6 42.2 18.2
Qwen2.5-Coder+SFT 82.9 75.6 80.1 66.1 46.9 16.2 39.5 14.9
OpenCoder-Instruct™ 83.5 78.7 79.1 69.0 403 16.9 - -
LLaDA-Instruct 354 31.7 31.5 28.6 16.5 2.7 14.1 1.4
Dream-Instruct 579 53.7 68.3 56.1 10.6 0.7 114 2.7
Dream+SFT 56.7 50.6 71.7 58.7 27.4 6.1 25.9 5.4
DiffuCoder-Instruct (5 ep) 72.0 65.2 75.1 61.9 35.7 12.2 34.0 8.8
- 1 epoch 67.1 60.4 75.7 61.9 31.1 8.1 32.0 6.1
- 1 ep flexible padding 65.2 58.5 71.2 59.5 354 11.5 324 10.1
+ coupledGRPO (lep) 73.2 68.3 78.6 67.5 40.4 10.8 37.5 10.8
+ coupledGRPO (2ep) 70.1 65.2 79.1 65.3 42.8 14.9 394 13.5
Commercial Models
GPT 40" 90.2 - 82.2 - 49.9 - - -
Mercury™ 90.0 - 771 - 45.5 - - -
Gemini Diffusion™ 89.6 - 76.0 - 454 - - -

to control the generation length. We compared different SFT strategies for DiffuCoder instruction
tuning, including: (i) using a fixed sequence length of 2048 for each sample with a conditional mask;
(i1) using a fixed 2048 length but mixing conditional and unconditional training; and (iii) flexible
padding, where we padded to the maximum sequence length in the current batch instead of a fixed
2048. Finally, we progressively added a conditional mask for the first epoch, considering that Stages
1 and 2 were trained unconditionally, and then trained the remaining 4 epochs using a fixed sequence
length of 2048. The SFT code is based on LLaMA-Factory’. The training was performed on 8 nodes
of 8 H100 GPUs each, using BF16 and ZeRO2 (Rajbhandari et al., 2020), taking around 24 hours.
We used the Adam optimizer with a maximum learning rate of 1e-5 and a linear warmup ratio of
0.1, followed by a cosine decay schedule to 10% of its peak value at the end of training.

Coupled GRPO For RL training, for both our model and the ablation baselines, we filtered 21K
hard samples from Acecoder-87k (Zeng et al., 2025) with verifiable test cases and trained for one
epoch. We used the pass rate of reference solutions in this dataset to filter for questions with a low
average (bottom 20%) and high variance (top 40%) pass rate. These were marked as hard samples,
yielding the final 21K samples used for GRPO training. We found that filtering the training samples
by difficulty into a proper range is important. We used the online sandbox E2B" for code execution
and reward verification. We trained the models on a single node with 8 H100 GPUs for a wall-clock
time of 40 hours. The default GRPO training parameters were: reference model sync steps 64,
number of iterations p = 2, 5 = 0.01, ¢ = 0.5, learning rate 1e—-6, and maximum completion length
256. The rollout parameters were: diffusion timesteps 256, rollout samples G = 10, and sampling

Shttps://github.com/hiyouga/LLaMA-Factory
*https://e2b.dev/

23

https://github.com/hiyouga/LLaMA-Factory
https://e2b.dev/

temperature 1.2. When sampling coupled ¢, we empirically chose a range of [0.2, 0.8] instead of
[0, 1.0] to avoid extreme loss values (Figure 8). Despite training for only one epoch with coupled
GRPO, we observed that DiffuCoder-Instruct’s performance continued to rise as we added more
training steps.

20.0 —e— unweighted loss
avg unweighted loss
—— weighted loss

---- average weighted loss

17.5
15.0

n 12,5

wn

S 100
7.5
L e A R =

2.5 M

0.0
0.0 0.2 0.4 0.6 0.8 1.0
timestep t

sweet spot

Figure 8: Validation loss distribution of DiffulLLaMA (Gong et al., 2025) for different timesteps. The
weighted loss refers to £; in Eq. (1 1), while the unweighted loss refers to the cross-entropy term
in the masked diffusion loss without the 1/t weighting. Timesteps that are too large or too small
will lead to extreme values. The sweet spot is in the span of [0.2, 0.8], which is also consistent for
DiffuCoder.

We designed a weighted reward for each completion o; as r(0;) = 2.0 X Tcode (0;) + 0.5 X Tormar (05)-
Teode (0;) 1s the pass rate on the test cases, evaluated only if 7ormat(0;) = 1.

* 0.5 if o; contains a valid Markdown code block and passes a Python syntax check;
* (.25 if the code block format is correct but the code has a syntax error;

¢ (if the Markdown block format is not matched.

The raw results are in Table 4. Our design choices in § rely on these results. DiffuCoder Base
underperforms on the instruction-query BigCodeBench (I), likely because the pre-training corpus
teaches the base model to focus on completion rather than instruction following. Consequently, it fares
better on the subset BigCodeBench (C) with completion query. After instruction tuning, DiffuCoder-
Instruct achieves reasonable performance on BigCodeBench (I), indicating that instruction tuning
teaches the model to follow instructions.

Table 5: Chat template during the evaluation for ~ Table 6: Chat template during the evaluation for

HumanEval and BigCodeBench (C). MBPP and BigCodeBench (I).
<|im_start|>system <|im_start|>system
You are a helpful You are a helpful
assistant.<|im_end]|> assistant.<|im_end]|>
<|im_start |>user <|im_start |>user
Please complete the following A
problem: {prompt}

{prompt} <|im_end|>

A <|im_start|>assistant
<|im_end]|> Here 1s the code to solve this
<|im_start |>assistant problem:

Here is the code to solve this ‘Y 'python

problem:

‘Y'python

24

B.2 EVALUATION DETAILS

By default, LLaDA (Nie et al., 2024) employs low confidence remasking with temperature 0, while
Dream (Ye et al., 2025) uses top negative entropy remasking with temperature 0.2. Both models
use a maximum sequence length and diffusion timesteps of 512. GSMS8K tests are conducted using
Im-harness’, and code benchmarks are based on Qwen2.5-Coder’s evaluation suitcase®. DiffuCoder
shares the architecture (Qwen2.5-7B), tokenizer, and inference implementation of Dream-7B. The
chat templates we used during the inference are listed below.

C ADDITIONAL RESULTS

C.1 ENTROPY PATTERN

In §4.2, we present the phenomenon entropy sink and illustrate the L-shaped distribution of the
confidence score for a single time step (the first forward). In Figure 9, we extend the visualization to
2D heatmaps. We can still observe a casual bias in these examples, but more token information and
flexibility are involved compared to the strict causal mask.

o

20

=)
)

Decoding steps
Decoding steps
90 80 70 60 50 40 30 20 10 O

Decoding steps
11010090 80 70 60 50 40 30 20 10 O
40

1 20 30 40 0 10 20 30 40 50 60 70 80 90

0
Index of Tokens Index of Tokens

0 10 20 30 40 50 60 70 80 90 100110
Index of Tokens

Figure 9: Visualization of the decoding entropy for random samples. The x-axis is the index of
generated token, while y-axis refers to decoding steps. Here we set the diffusion timestep and
generation length to be equal.

C.2 DECODING SAMPLES

Figure 10 demonstrates the generation order for different temperatures. The background color runs
monotonically from red (earliest) through the spectrum to purple (latest). As we can see, the higher
temperature leads to less AR sequence generation. The model tends to determine the right-hand side
first, including pad tokens which decide the generation length, and the key parts of this code snippet
are generated near the end.

C.3 DECODING TIMESTEPS

Another key motivation for measuring AR-ness is its relationship with generation parallelism. A
model with very high AR-ness implies strong left-to-right token dependencies, which limits op-
portunities for parallel decoding. Conversely, lower AR-ness suggests that the model can generate
multiple tokens more independently, enabling fewer diffusion steps and thus faster generation. In
other words, by monitoring AR-ness, we also uncover how much headroom remains for accelerated,
parallel decoding schedules. In Figure 11, if we correlate the performance drop from 1x to 2x with
the non-AR (parallelism) decoding pattern, where a higher drop indicates higher AR-ness, then we
can draw the following conclusions. (1) Compared with the Instruct model (the starting point of RL
training), GRPO training improves DiffuCoder-Instruct’s parallelism. (2) Compared with one epoch
of instruction tuning, training for more epochs (5ep here) can reduce the AR-ness of the model. (3)
For different sampling temperatures in the GRPO-trained DiffuCoder, the higher temperature (0.4)
brings less AR-ness and thus a smaller performance drop at 2x speed.

"https://github.com/EleutherAI/lm-evaluation-harness
$https://github.com/QwenLM/Qwen2.5-Coder/tree/main/qwencoder—eval

25

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/QwenLM/Qwen2.5-Coder/tree/main/qwencoder-eval

from typing import List from typing import List

def nas close elements(numbers: List[floatl. threshold: float) —> def has close elements(numbers: Listlfloatl. threshold: float) —> boo
Chock ST In oiven Lio of mumbere, areany two numbers closer fo each other tha " Chack 17 In OIVeNTI5E of RUNDErS, ars any two nuRbErs closer fo each other thai
aiven threshcld aiven threshnld
F>i has_close_elements([1.0, 2.0, 3.0], 0.5) ;>T has_close_elements([1.0, 2.0, 3.0], 0.5)
alse alse
22> has_close_elenents([1.0, 2.8, 3.0, 4.0, 5.6, 2.01, 0.3) 22> has_close_elenents([1.0, 2.8, 3.0, 4.0, 5.0, 2.01, 0.3)
for 1 i ranae(Ten(nunbers)): for 1 1n ranae(len(nubers)):
or i_in ranae(i + 1. len(numbers)): for 1 in ranae(i+1. len(numbers)):
if abs(numbersli] - numbers[j]) < threshold: if abs(numbersli] - numhers[]]) < threshold:
return True return True
_return False .._return False
in en
<Idlm nldl><lﬂ'|.l padl><Idlm padl><Idlm padl><ldlm pad|><Idlm padl><Idlm padl> <Idll nnﬂl><|d1m padl><Idlm padl><Idlm pad|><Idlm padI><ldlm padl><Idlm pad|><Idlm padl:

<ldlm pad|><ldlm pad|><Idlm pad|><Idlm pad|><ldlm pad|><Idlm pad|><|dlm padl><ldlm pad| <ldlm Dadl><|(ﬂm nadl)(ldlm Dadl)(ldlll Dadl)(ldlm Dadl)(ldlm pad|><Idlm pad|><Idlm pad|:
<ldlm padl><ldlm padI><Idlm pad|><Idlm pad|><|dlm padl><Idlm pad|><Idlm padl><ldlm padl <Idlm padl><ldlm pad|><Idlm padl|><Idlm pad|><Idlm pad|><|dlm pad|><Idlm pad|><Idlm padl:
<ldim padi><|dim padi><|dlm pad|><|dim pad|><|dim pad|><|dim pad|><|dim pad|><|dim pad| Z141n padi><idlm padi><Idin padi><idln padi><|din padi><idlm padi><idin padis<idlm padi:

from typing import List
from typing import List

def separate paren aroyos(paren string: str) > Lististrl: . ” . v -
separate those aroup into separate strings and return the List of tho I s T T T A AT
Sevarate aroups are balanced (each ooen brace is broperly closed) and not nested within each other separte' those: Toun, 10 sedarate strings and Tewurn the- LISt o1 o

Tonore anv Sbaced in the Sndut S5Tine; §eoarate arouos are balanced (each oven brace is properly closed) and not nested within each other

def separate oaren aroyos(paren string: str) - Lististrl:
Inout fo this function is a strine containing muliiole arouos of nested parentheses. Your goal is t

R seagracs Barn orates(() (1)1 100 D" Calgcetan aues (113 T
>>> senurute nuren urmmil Crenaeny
THERGT M [R O
g?;;&r; Elh)"u paren_string.replace(" ", "") # Remove spaces from the input string narell\ghesqs paren_string.replace(* *, '*)
st Cirrent
Cirvent arouo =
’ Elrrent count =
for char 1l| paren string: for char in nuren(neses
S(ﬂck apoend(char) g‘f" "
current aroup += char it c;renl':n\m(
elif % 2 i:' e result.aopen
Stack.000() curret count o= cha
#r;gnl urogo += char {g(urn uld

Lty “m‘en““"”‘"‘ OGN <IdIm pad|><Idlm padl><Idlm pad|><Idlm padl><Idlm padl><Idlm padl>

o resute current group <lain pedi><idin padi><idin gum‘xmlm Dadi><laln padl><idin :aﬂ\)(:ﬂlm 0adi><ldln padl>
<Iin endi>
I T e)R) SR T S S S i s e e e = e] S1Gth DadI><Iatn Dadi><ldln oadi><ldlm oadi><idlm badi><idim badi><idim badi><idim badi>

<Idlm vad|><idlm vad|><Idln vadi><Idln vad|><Idln pad|><Idln pad|><|dln pad|><idln pad|>

S A et i f T e T el o s i cellec i T <Idlm padi><idlm pad|><Idin pad|><Idin pad|><|dln pad|><Idln pad|><|din pad|><idlm padl>

<Idin padi><Idlm vadi><Idln padi><Idln pad|><Idln vadl><Idim oadi><Idin padi><Idlm vadl>
<ldn pad|><Idlm pad|><Idln padi><|dln pad|><|din padi><|dim padi><|din padi><|din pad|>

Figure 10: Visualization of the decoding trajectory of DiffuCoder-Instruct under different sampling
temperatures. Each character’s background is colored from red to purple according to the recover
order of the [MASK]. Left: temperature is 0.2; Right: temperature is 1.2.

Instruct (1ep) 1x
Instruct (1lep) 2x
Instruct 1x

Instruct 2x

w. GRPO 1x temp0.2
w. GRPO 2x temp0.2
w. GRPO 1x temp0.4
w. GRPO 2x temp0.4

goacannn

HumanEval HumanEval+ MBPP MBPP+

Figure 11: Different model variants act differently when changing decoding timesteps to 1/2 of the
sequence length. 1x means the default setting where decoding timesteps are equal to the sequence
length while 2x means 1/2 fewer steps which will result in 2x speedup.

C.4 CoUPLED GRPO TRAINING

‘We monitored the completion length during GRPO training but did not observe a consistent increase
in length as seen in AR GRPO training (Shao et al., 2024; OpenR 1, 2025). A possible reason is that
we do not encourage long-chain reasoning generation (Liu et al., 2025c¢), which could be a future
research direction.

In our experimental environment, the end-to-end GRPO training time for DiffuCoder is twice that of
the AR model Qwen2.5-Coder.

2.0 1.8 2.0
1.8
° 1.6 - 1.5
5 1.6 5 5
H i H H
214 Baseline (p=0.15) 2 14 & 1.0
12 Full mask (p=0) ' —— Coupled ' ——— Coupled
' —— Coupled GRPO —— de-Coupled —— AR
1050 02 04 06 08 10 12650 02 04 06 08 10 0500 02 04 06 08 10
Training Epoch Training Epoch Training Epoch

Figure 12: Reward curves during GRPO training. Left: Comparison between coupled GRPO and
d1 baselines (based on an early version of DiffuCoder-Instruct). Middle: Decoupled GRPO uses
the same number of sampling times but with randomly sampled masks (based on an early version of
DiffuCoder-Instruct). Right: Coupled-GRPO on DiffuCoder is compared with regular GRPO for the
AR model Qwen2.5Coder+SFT.

26

D DISCUSSIONS

Data Quality It is well-known that data quality plays a crucial role in LLM training (Hui et al.,
2024). Our current experiments rely entirely on open-source community datasets (Huang et al., 2024).
Since our focus is on experimental validation rather than achieving absolute performance, the data
used may not be of the highest quality, and the amount of high-quality data is also limited. Future
scaling, either in pre-training or RL, could benefit from better-curated datasets.

Template Sensitivity The instruction templates used in our GRPO training data (Zeng et al.,
2025) are relatively fixed and lack diversity. This may limit the model’s generalization ability, as it
could become overly reliant on specific prompt formats. Incorporating more diverse, high-quality
instructions could help improve robustness during evaluation.

Python Code Our current training and evaluation primarily focus on Python. Extending these
methods to multiple programming languages and exploring mixed text-code agent settings (Xu et al.,
2024) are promising future directions.

Long Reasoning DiffuCoder has not been trained on tasks involving long reasoning chains (An
et al., 2025; Liu et al., 2025¢). This is mainly due to the limited sequence length and slower inference
speed of current dLLMs. Supporting longer reasoning chain remains a challenge for future work.

Entropy Analysis Recent studies on AR LLMs have examined token-level entropy changes during
RL training (Cui et al., 2025; Liu et al., 2025a; Agarwal et al., 2025). A promising direction would be
to further analyze token entropy in our setting to better understand its dynamics and potential impact
on reward optimization.

27

	Introduction
	Preliminaries and Notations
	Mask Diffusion Models
	Markov Decision Process
	Group Relative Policy Optimization

	DiffuCoder
	Understanding Mask Diffusion Models based on DiffuCoder
	Autoregressive-ness in Generation
	Decoding Analysis
	Generation Diversity

	Coupled-GRPO
	Related Work
	Conclusion
	Problem Formulation
	Mask Diffusion Models
	Generation Autoregressive-ness
	Coupled GRPO
	Theoretical Analysis of Coupled-GRPO
	Standard vs. Coupled Monte Carlo Estimators
	Proofs

	Implementation Details
	Training Details
	Evaluation Details

	Additional Results
	Entropy Pattern
	Decoding Samples
	Decoding Timesteps
	Coupled GRPO Training

	Discussions

