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Abstract

Previous neural machine translation models used some heuris-
tic search algorithms (e.g., beam search) in order to avoid
solving the maximum a posteriori problem over translation
sentences at test phase. In this paper, we propose the Gumbel-
Greedy Decoding which trains a generative network to predict
translation under a trained model. We solve such a problem us-
ing the Gumbel-Softmax reparameterization, which makes our
generative network differentiable and trainable through stan-
dard stochastic gradient methods. We empirically demonstrate
that our proposed model is effective for generating sequences
of discrete words.

Introduction

Neural machine translation (NMT) (Cho et al. 2014;
Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2014), as a new territory of machine translation research,
has recently become a method of choice, and is empirically
shown to be superior over traditional translation systems.

The basic scenario of modeling neural machine translation
is to model the conditional probability of the translation, in
which we often train the model that either maximizes the log-
likelihood for the ground-truth translation (teacher forcing)
or translations with highest rewards (REINFORCE). Despite
these advances, a key problem that still remains with such
sequential modeling approaches: once the model is trained,
the most probable output which maximizes the log-likelihood
during training cannot be properly found at test time. This is
because, it involves solving the maximum-a-posteriori (MAP)
problem over all possible output sequences. To avoid this
problem, heuristic search algorithms (e.g., greedy decoding,
beam search) are used to approximate the optimal translation.

In this paper, we address this issue by employing a
discriminator-generator framework – we train the discrimina-
tor and the generator at training time, but emit translations
with the generator at test time. Instead of relying on a non-
optimal searching algorithm at test time, like greedy search,
we propose to train the generator to predict the search directly.
Such a way would typically suffer from non-differentiablity
of generating discrete words. Here, we address this prob-
lem by turning the discrete output node into a differentiable
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node using the Gumbel-Softmax reparameterization (Jang,
Gu, and Poole 2016). Throughout the paper, we named this
new process of generating sequence of words as the Gum-
bel Greedy-Decoding (GGD). We extensively evaluate the
proposed GGD on a large parallel corpora with different vari-
ants of generators and discriminators. The empirical results
demonstrate that GGD improves translation quality.

Neural Machine Translation

Neural Machine Translation (NMT) models commonly share
the auto-regressive property as it is the natural way to model
sequential data. More formally, we can define the distribution
over the translation sentence Y = [y1, ..., yT ] given a source
sentence X = [x1, ..., xTs] as a conditional language model:

p(Y |X) =
T∏

t=1

p(yt|y<t, X). (1)

The conditional probability is composed of an encoder et(·)
and a decoder network dt(·) with a softmax layer on top. For
notation, we denote the vocabulary size of the target language
as K and each word yt is assigned to an index k ∈ [1,K]. In
this paper, we use the one-hot representation for each word,
that is, yti = I[i = k], i = 1, ...K. Thus the probability is
computed using softmax:

p(yt|y<t, X) = softmax
[
a
(
zt; θa

)]� · yt (2)

where softmax(a)i =
exp(ai)∑K

j=1 exp(aj)
, and

zt = f(zt−1, yt−1, et(X; θe); θd) (3)

zt is the hidden state of the decoder at step t, and a is
the energy function which maps the hidden state into a
distribution over the vocabulary. The output of the en-
coder et(X) is a time-dependent feature of the source sen-
tence X . Typically, both the encoder and decoder consist
of deep recurrent neural networks (with the soft attention
mechanism integrated) (Bahdanau, Cho, and Bengio 2014;
Luong, Pham, and Manning 2015). We use θ = {θa, θd, θe}
to denote the parameters of the NMT model.

Training phase

There are two common ways to train NMT models, which
are teacher forcing (Williams and Zipser 1989; Sutskever,
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Vinyals, and Le 2014; Bahdanau, Cho, and Bengio 2014) and
REINFORCE (Williams 1992; Ranzato et al. 2015; Shen et
al. 2015; Bahdanau et al. 2016) algorithms 1.

In teacher forcing, the model is trained to maximize the
conditional log-likelihood (MLE) of the ground-truth trans-
lation Y ∗ given the source sentence X . In contrast, the
REINFORCE algorithm does not rely on the ground-truth
translation, but it maximizes the expectation of a global re-
ward function R. In an unified view, the gradients w.r.t the
parameters θ for both methods can be seen as:

EY∼M

[
∂

∂θ
log pθ(Y |X) ·R(Y )

]
(4)

where for teacher forcing, M is the empirical distribution
on Y |X and R(Y ) ≡ 1, while for REINFORCE, M is pθ
itself and R is used to re-weight the gradients. The primary
difference between teacher forcing and REINFORCE is that
teacher forcing corrects the translation word-by-word based
on the ground-truth prefix, whereas REINFORCE rewards the
translated sentence as a whole. The training of teacher forcing
is stable but it suffers from the local normalization property
(Ranzato et al. 2015). Whereas, although REINFORCE does
not have such a problem, it is known to be difficult to train
due to the high variance in its gradients.

Test phase

At the test phase, our goal is to make the best translation of the
source sentence possible. This process is also known as the
decoding process. Ideally, we can use Maximum-a-Posteriori
(MAP) to find a translation Y which maximizes log pθ(Y |X).
Unfortunately, exact MAP inference is intractable due to the
exponential complexity in searching. Therefore, we approx-
imate the MAP inference based on some heuristic search-
based methods in practice:

Sampling & Greedy Decoding As the model is learned,
we can directly perform sampling from the conditional distri-
bution word-by-word, in which case the translation is stochas-
tic. In contrast, rather than maximizing the log-likelihood for
the entire translation, greedy decoding simply picks the most
likely word at each time step t, resulting in a deterministic
translation. However, it is inadequate in practice due to lack
of future information.

Beam Search Beam search usually finds better trans-
lation by storing S hypotheses with the highest scores
(
∏t

t′=1 p(y
t|y<t, X)). When all the hypotheses terminate, it

returns the hypothesis with the highest log-probability. De-
spite its superior performance compared to greedy decoding,
the computational complexity grows linearly w.r.t. |S|, ren-
dering it less preferable in production environment.

Discriminator-Generator framework

The major discrepancy between training and testing time is
that we cannot leverage the full power of our trained NMT

1For simplicity, previous efforts using reinforcement learning to
train NMT are treated as variants of REINFORCE.

model during testing. Here, we propose to train a separate
generative network that will reduce the potential mismatch
between the training and testing phases. Let us first portray
the training and test procedure in terms of the discriminator-
generator framework as following:
• NMT-discriminator - measures the log-likelihood at word

level - log pθ(Y |X) - given the source sentence X and a
translation Y .

• NMT-generator - generates the translation by taking the
output of the word as an input to next step recursively -
Y = Gφ(X) - given the source sentence X . (G is usually
a search-based method).

We train the generative network through a “GAN-like”
discriminator-generator-framework, where the output of the
NMT-generator2 gets fed to the NMT-discriminator (see
Fig. 1 (b)). We propose to learn the parameters of gener-
ator φ by maximizing the NMT discriminator’s score,

J (φ) = EY∼Gφ
log pθ (Y |X) (5)

and the gradient w.r.t φ is computed using chain rule,

∂ log pθ (Y |X)

∂Y

∣∣∣∣
Y=Gφ(X)

· ∂Gφ (X)

∂φ
(6)

In practice, we can set the initial parameters of the gener-
ator to be the same as the discriminator’s parameters. Note
that the discriminator and the generator share the same pa-
rameters, i.e., θ = φ, and the generator is never trained in the
traditional NMT framework.

Unfortunately, optimizing the generator with Eq. 5 and 6
involves operations, such as sampling or argmax, that are non-
differentiable w.r.t (discrete) words. Therefore, we cannot
leverage the backpropagation algorithm (Rumelhart, Hinton,
and Williams 1986). Here, we solve this problem by incorpo-
rating the Gumbel-Softmax relaxation into it(Section ).

Gumbel-Greedy Decoding

In this section, we show how to train the generator w.r.t
the discriminator’s output using the idea of Gumbel-Greedy
Decoding, where we apply the Gumbel-Softmax based repa-
rameterization trick in sampling of the NMT-generator. The
main idea is to turn the stochastic node (the last layer of
the generator network) into a differentiable function of the
network parameters with an independent random variable.

Sampling as Gumbel-Greedy Decoding

The Gumbel-Max Trick (Gumbel 1954) transforms sam-
pling from a categorical distribution to an optimization prob-
lem, and visa versa. That is to say, y ∼ pθ (y|y<t, X) =
softmax(a) in Eq. 2 is equivalent to 3:

y = argmax (g + a) , g ∼ Gumbel i.i.d. (7)

where argmax(x)i = I[xi = max(x)], and each element
in g can be computed using the inverse transform sam-
pling of an auxiliary random uniform variable ui ∼ U(0, 1),

2The term generator and decoder are used interchangeably.
3We omit the time-step mark t for simplicity.
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Figure 1: (a) An example illustrating the two functions of a NMT model: discriminator and generator, (b) An illustration of
computational flow for the training of Gumbel-Greedy Decoding. The cost function uses the same architecture of the generator
to compute the log-likelihood.

gi = − log(− log(ui)). Since the Gumbel noise g and sam-
pled words are independent, we can simply break down the
sampling into a two-step process:

• Sample a noise gt from Gumbel distribution at each step;
• Perform the greedy decoding based on a noise-biased dis-

tribution in Eq. 7.

Note that the Gumbel-max trick does not change the non-
differentiability of sampling,

Gumbel-Softmax Relaxation (Maddison, Mnih, and Teh
2016; Jang, Gu, and Poole 2016) proposed a reparameteri-
zation trick for discrete random variables based on Gumbel-
Softmax where

ŷ = softmax((g + a)/τ), g ∼ Gumbel i.i.d. (8)

where τ ∈ (0,∞) is the temperature. The softmax function
approaches argmax operations as τ → 0, and it becomes
uniform when τ → ∞. Thus, the samples are no longer
one-hot vectors. With the Gumbel-Softmax relaxation, we
can easily derive the partial gradient estimator ∂ŷ/∂a of
Gumbel-Softmax as:

∂ŷi
∂aj

= ŷi (δij − ŷj) /τ (9)

where δij = I[i = j]. This allows us to train the NMT model
using the backpropagation algorithm. Note that according to
Eq. 9, limτ→0 [∂ŷi/∂aj ] = 0 (or ±∞ if more than 2 words
achieve the maximum energy simultaneously), which makes
training with backpropagation impossible for τ → 0.

Straight-Through (ST) Gumbel Nonetheless, there still
remains a challenge to overcome before we can apply
Gumbel-Softmax reparameterization to NMT. In language

modeling, the embedding vector is chosen from the look up
table based on the generated word, and is emitted in the next
time step. However, the Gumbel-Softmax relaxation leads
to a mixture of embedding vectors, in turn causing a mixing
error. Furthermore, such mixing errors get accumulated over
time as the errors are propagated forwards through the recur-
rent neural network. This causes future word generation to
deteriorate even with a small temperature τ , especially when
we are using a pre-trained model.

In order to avoid the problem of mixing and propagating
word embedding errors over time, we apply the straight-
through version of the Gumbel-Softmax estimator (Jang, Gu,
and Poole 2016), or called ST-Gumbel. During the forward
phase, we use the Gumbel-Max in Eq. 7, while computing
the gradient of the Gumbel-Softmax in Eq. 9, i.e., ŷt in Eq. 9
is replaced by yt in Eq. 7. Obviously, the ST-Gumbel es-
timator is biased due to the sample mismatch between the
forward and backward passes. However, we find that it works
empirically.

Learning By putting all together, we can derive the basic
learning algorithm for Gumbel-greedy decoding. We esti-
mate the gradient from a differentiable cost function R(Y )
w.r.t. φ:

EY∼Gφ

[
∂

∂φ
R(Y )

]
≈ Eg∼P

[
∂R

∂Y

∂Ŷ

∂φ

]
(10)

where we use P to represent the noise distribution over all
time steps. From the equation, it is clear that such approx-
imation holds by assuming ∂Y /∂Ŷ ≈ 1 which however is
not always true. In practice, we can use any differentiable
cost function that evaluates the goodness of the generation
output. For instance, a fixed language model, a critic that
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predicts BLEU scores, or the NMT-discriminator (Eq. 5). We
will discuss this in later sections.

Arbitrary Decoding Algorithms as Gumbel-Greedy
Decoding

Inference on Gumbel The Gumbel-Max trick indicates a
general formulation that can present any decoding algorithms
as Gumbel-Greedy Decoding:

y = argmax (g + a) , g ∼ Q (11)

where Q represents a special distribution that generates this
word, which is typically unknown. Note that when we choose
Q = P , the decoding algorithm degenerates into sampling.
However, as discussed in (Maddison, Tarlow, and Minka
2014), given the trajectory of decoded words, we can effi-
ciently infer its corresponding Gumbel noise g using a top-
down construction algorithm as g = g∗ − a, and:

g∗i =

⎧⎨
⎩
g′, yiis selected

g′ − log
[
1 + eg

′−g̃i
]
, otherwise

(12)

where

g̃i = − log(− log(ui)) + ai, ui ∼ U(0, 1)
and the “top-gumbel"

g′ = − log(− log(u)) + log

(∑
i

exp(ai)

)
, u ∼ U(0, 1)

Such inference is a special case of the core top-down algo-
rithm of A* sampling.

Learning The above inference algorithm shows that, after
running any decoding algorithm Gφ(X) (e.g. greedy decod-
ing, beam search, etc.), we can always infer corresponding
noise gt at each time step. Although in such cases the in-
ferred noise does depend on the translation, which breaks
the requirement of reparameterization trick, the decoding
methods we use are usually deterministic methods. That
is, p (g, Y |X) ≈ p (g|X) p (Y |X). It is possible to train
the deterministic generator as an equivalent Gumbel-greedy
decoding using Eq. 10.

Gumbel-Greedy Decoding for
Discriminator-Generator Framework

We can finally conclude the learning algorithm for the pro-
posed Discriminator-Generator framework using GGD, by
simply setting the discriminator’s output log pθ(Y |X) as the
cost function in Eq. 10, as shown in Fig 1(b), where we
illustrate the computational flow of the whole framework.
Note that the non-dfferentiable path is replaced by a differen-
tiable path with an additional noise due to GGD, and gradient
(though biased) flows can freely go through both directions of
the discriminator and the generator, sufficiently communicat-
ing all useful information for learning. The overall algorithm
for learning with GGD is found in Algorithm 1.

With Regularization One issue we observed in practice
is that, directly optimizing the discriminator’s output is not
stable for learning the generator with GGD. Fortunately, we
can stabilize the optimization by adding an entropy term in
the cost function w.r.t φ:

EGφ
[log pθ (Y |X)]− EGφ

[log pφ′ (Y |X)] (13)

where we use φ′ to represent a copy of the current parameters
φ and make it as a “discriminator". Note that gradients w.r.t
φ will not flow into φ′.

Adversarial Learning Even though it is possible to learn
the generator with a fixed discriminator, the proposed frame-
work also allows to optimize both the discriminator and the
generator in an adversarial way (Goodfellow et al. 2014). In
particular, we take a similar formulation of the energy-based
generative adversarial nets (Zhao, Mathieu, and LeCun 2016)
where in our case we use the discriminator’s output as the
energy to distinguish the ground-truth translation and the
generator’s generation, w.r.t θ:

ED [log pθ (Y |X)]− EG [log pθ (Y |X)] (14)
where D is the empirical distribution of real translation. In
practice, we alternate the training of the generator and the
discriminator iteratively.

Algorithm 1 Gumbel-Greedy Decoding
Require: discriminator pθ , generator Gφ, Nd ≥ 0, Ng > 0

1: Train θ using MLE/REINFORCE on training set D;
2: Initialize φ using θ;
3: Shuffle D twice into Dθ and Dφ

4: while stopping criterion is not met do
5: for t = 1 : Ng do // learn the generator
6: Draw a translation pair: (X, _) ∼ Dφ;
7: Obtain Y, Ŷ = GUMBELDEC(G,X)
8: Compute forward pass ∼ X,Y with Eq. 13
9: Compute backward pass ∼ X, Ŷ , update φ

10: for t = 1 : Nd do // learn the discriminator
11: Draw a translation pair: (X,Y ∗) ∼ Dθ;
12: Obtain Y, _ = GUMBELDEC(G,X)
13: Compute forward pass ∼ X,Y, Y ∗ with Eq. 14
14: Compute backward pass ∼ X,Y, Y ∗, update θ

Function: GUMBELDEC(G,X)
1: if G = ‘sampling’ then
2: Sample g ∼ Gumbel i.i.d.
3: Obtain Y, Ŷ with Eq. 7 and Eq. 8
4: else
5: Obtain Y = G(X)
6: Infer g with Eq. 12
7: Obtain Ŷ with Eq. 8
8: Return Y, Ŷ

Experiments

Experimental Setup

Dataset We consider translating – Czech-English (Cs-En)
and German-English (De-En) – language pairs for both direc-
tions with a standard attention-based neural machine transla-
tion system (Bahdanau, Cho, and Bengio 2014). We use the
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parallel corpora available from WMT’154 as a training set.
We use newstest-2013 for the validation set to select the best
model according to the BLEU scores and use newstest-2015
for the test set. All the datasets were tokenized and segmented
into sub-word symbols using byte-pair encoding (BPE) (Sen-
nrich, Haddow, and Birch 2015). We use sentences of length
up to 50 subword symbols for teacher forcing and 80 symbols
for REINFORCE, GGD and testing.

Architecture We implement the NMT model as an
attention-based neural machine translation model whose en-
coder and decoder recurrent networks have 1,028 gated re-
current units (GRU, Cho et al., 2014) each. For the encoder,
a bidirectional RNN is used and we concatenate the hid-
den states from both directions to build the context at each
step. For the decoder, a single layer feed-forward neural
network (512 hidden units) is used to compute the attention
scores. Both source and target symbols are projected into
512-dimensional embedding vectors. The same architecture
is shared by the NMT-discriminator and the NMT-generator.

Baselines We set our baseline to be NMT model trained
with teacher forcing and REINFORCE algorithm. Our
NMT model was trained with teacher forcing method (Max-
imum Likelihood) for approximately 300,000 updates for
each language pairs. These networks were trained using
Adadelta (Zeiler 2012). We further fine-tuned these mod-
els using REINFORCE with a smoothed sentence-level
BLEU (Lin and Och 2004) as reward following similar pro-
cedures in (Ranzato et al. 2015). We denote the former
trained model as θML and the additionally trained model
using REINFORCE as θRL.

Additionally, we explored the Straight-Through (ST) esti-
mator (Bengio, Léonard, and Courville 2013; Chung, Ahn,
and Bengio 2016) and compared with the ST-Gumbel that
GGD uses for passing the gradients. The difference between
the two is that, we use the output distribution softmax (a/τ)
instead of softmax((g + a)/τ) in Eq. 8 in the original ST
estimator. The ST estimator, as a special case of ST Gumbel
estimator, is independent of the choice of the selected word
in the forward pass.

Pre-training In our experiments, we use pre-trained mod-
els from the baseline θML for the discriminative networks
for training generative (decoding) network. It is possible
to start a generator φ from scratch for generating transla-
tion, and yet it has been shown to be effective if the gener-
ator is continually learned from the initialization of a pre-
trained discriminator (Ranzato et al. 2015; Shen et al. 2015;
Bahdanau et al. 2016; Lamb et al. 2016). Because our
learning algorithm requires sampling from the generator, the
searching space is extensive for a randomly initialized gen-
erator to output any meaningful translation to learn from. In
our experiments, we observed that initializing the parame-
ter of the generator φ = θML worked consistently better
whether we choose a stochastic generator for sampling or a
deterministic one for greedy decoding.

4http://www.statmt.org/wmt15/

Figure 2: Comparison of greedy BLEU scores on the valida-
tion set of Cz-En, achieved by two generators that are learned
to optimize a discriminator initially trained with teacher forc-
ing. “GAN” refers to the discriminator being iteratively
trained together with the generator, while “fixed D” refers to
the discriminator being fixed. The straight black line and the
black dashed lines are the BLEU scores achieved by the base-
line models learned with teacher forcing and REINFORCE.

Learning of GGD We report the results of generator
trained with sampling and greedy decoding, respectively
based on Eq. 13. We find that learning using RMSProp (Tiele-
man and Hinton 2012) is most effective with the initial learn-
ing rates of 1× 10−5. It is also possible to continually learn
the discriminator according to Eq. 14. The generator usually
gets updated much more than the discriminator. In our ex-
periments, we used 10 updates for the generator for every
discriminator’s update.

We denote GGD-GAN for the model where the discrimi-
nator and the generator is jointly trained. We denote GGD-
Fixed-D for the model where only the generator is trained
with fixed discriminator.

Results and Analysis

In our first experiment, we examine whether the GGD-GAN
is more effective compare to GGD-fixed D. Fig. 2 presents
the results of training based on both sampling and greedy
methods. We observe that both GGD-GAN and GGD-Fixed-
D give much higher than the two baseline models, θML and
θRL, by ≈ +1.3 and ≈ +0.6 respectively. Furthermore,
the curves in Fig 2 shows that we get the best validation
BLEU score when the discriminator is trained together with
a stochastic generator with a adversarial loss. The reason
why GAN style of training works better than the fixed dis-
criminator training is because, we cannot get any additional
information that helps the generator when we are just training
the generator (see the blue curve in Fig. 2) when we start
with the same generator and the discriminator.

Importantly, we notice that the generator with GGD al-
ways improves the score compared to the original model.
This illustrates that even when the trained discriminator is
not optimal, the discriminator can be jointly trained with
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(c) comparison of greedy decoding (d) comparison of sampling
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Figure 3: Comparison of greedy BLEU scores on the validation set of Cs-En. Both (a) and (b) are achieved by stochastic
generators that are learned to optimize a discriminator trained with REINFORCE. (c) shows the comparison of learning the
generator of greedy decoding w.r.t. the teacher-forcing discriminator; (d) shows the comparison of learning the generator of
sampling w.r.t. the REINFORCE discriminator. For all sub-figures, the black straight line and the black dashed line mean the
BLEU scores achieved by the baseline models learned with teacher forcing and REINFORCE, respectively.

the generator again to achieve better score. In fact, just by
training greedy decoding on generator enhances the BLEU
score as shown in Fig. 3 green curve. Finally, we get the most
improvement when we use GGD with sampling instead of
GGD with greedy decoding.

Importance of Regularization We experimentally demon-
strate the effectiveness of entropy regularization from Sec-
tion . Fig. 3 (b) presents the performance with and without
the entropy regularization term. This figure illustrates that the
generator drops dramatically and only optimize the discrim-
inator when the entropy term is removed. We hypothesize
that one reason could be that the output distribution of a pre-
trained generator became highly peaked, and therefore, it is
sensitive to small changes. Thus, just relying on a discrimi-
nator network, which act as a positive force that pushes the
distribution go to a better direction is not sufficient. Rather,
we need the regularizer that act as a negative force, which
distributes the probability mass, is necessary. Lastly, we
also note that Eq. 13 can also be seen as the minimizing the
Kullback-Leibler (KL) divergence between pφ and pθRL

and
it achieves the optimal as pφ = pθRL

.

The sensitivity analysis w.r.t the temperature τ One of
the extra hyperparameter that is added from GGD is the
Gumbel-Softmax temperature τ rate. Here, we explore how
the changes in the temperature effect the performance. The
four different temperature rates {5, 0.5, 0.05, 0.005} were
used in the experiment.

The curves in Fig. 3 (a) demonstrate that the best result
is achieved when τ = 0.5. A smaller τ leads to a vanish-
ing gradient problem. In contrast, a larger τ also leads to
unstable training. We see that the performance curve drops
dramatically at τ = 5. We speculate that this is due to the
bias in the estimator. As the bias inside the estimator depends
on the amount of forward-backward mismatch Δy = y − ŷ,
which is proportional to the temperature we use. Jang, Gu,
and Poole (2016) suggests to anneal the temperature over
the training time. However, we did not find the annealing
technique help in practice at least for NMT. All of our mod-
els were trained with temperature rate of 0.5 in the other
experiments.

ST versus ST-Gumbel Last but not least, we compared the
original Straight-Through (ST) estimator (Bengio, Léonard,

5130



SRC 
REF 

MLE 
GGD 

Izraelské děti se po válce v Gaze vrací do školy 
Israeli Children Return to School After Gaza War 

Israeli children , after the war in Gaza , go back to school 
Israeli children return to school after the Gaza war 

SRC 
REF 

MLE 
GGD 

Podle mých informací se takové pušky vyráběly až ke konci války . 
When we got close to the clay bottom , we reached a barrel , " Radomil Novák recalled . 

We came to the barrel as we approached the clay day , ' said Radomil Novák . 
We were on the gun when we got close to the clay day , ' said Radomil Novák . 

SRC 
REF 

MLE 
GGD 

Jde o další ze série podobných zkoušek , které izolovaný severokorejský režim provedl v posledních týdnech . 
This year North Korea carried out an unusually high number of rocket and artillery tests . 

North Korea , this year , was unusually large in missiles and artillery tests . 
North Korea , this year , was unusually large amounts of the rocket and artillery tests . 

Figure 4: Three Cs-En examples in which the difference between the MLE and the GGD-GAN is large.

Model DE-EN EN-DE CS-EN EN-CS

Greedy
MLE 21.63 18.97 18.90 14.49
RL 22.56 19.32 19.45 15.02
GGD 23.27 19.81 20.62 16.04

Beam
MLE 24.46 21.33 21.20 16.20
RL 25.12 22.13 21.92 17.02
GGD 25.32 21.97 22.47 17.64

Table 1: The greedy decoding and the beam-search perfor-
mance of models trained with GGD-GAN against MLE and
REINFORCE (referred to RL). BLEU scores are calculated
on the test sets.

and Courville 2013; Chung, Ahn, and Bengio 2016) with ST-
Gumbel. Since ST is just a special case of ST-Gumbel, we
can run all the experiments in the same way and simply drop
the Gumbel noise term when computing the backward pass.
As shown in Fig. 3 (c) and (d), we have two experiments
using these two estimators, training greedy decoding and
sampling, respectively.

We observe that ST-Gumbel works better than the orig-
inal ST estimator in both cases, especially when training
the generator with sampling. This is because the backward
pass of the ST-estimator is independent of the word that we
choose in the forward pass. This is especially problematic
for sampling-based compare to greedy-based, because we
can get a sampled word that has a relatively small probabil-
ity in the output distribution. In contrast, the ST-Gumbel
always sets the selected word with the highest score in the
Gumbel-Softmax (Eq. 8) by adding the noise. Consequently,
this reduces the bias compared with the ST-estimator and
makes the learning more stable.

Final Results Based on the above experiments, we find
the most proper training setting for GGD is when we i)
jointly training the discriminator and the generator, and ii)
use sampling-based generator with additional entropy regular-
ization. We report the final performance on all four language
pairs with these settings in Table 1 Both BLEU scores of
greedy decoding and beam-search (size=5) are reported. It is
clear that the generators trained with the proposed GGD al-
gorithm can consistently outperforms the baseline models in
the most of the cases. Examples of the proposed GGD-GAN
that outputs better translation results can be found in Fig. 4.

Related Work

There has been several work on training to solve decoding
problem in NLP (Shen et al. 2015; Ranzato et al. 2015;
Wiseman and Rush 2016). Recently, there has been a work
that came out independently of ours on learning to decode.
Li, Monroe, and Jurafsky (2017) proposed to train a neural
network that predicts an arbitrary decoding objective given a
source sentence and a partial hypothesis or a prefix of trans-
lation. They use it as an auxiliary score in beam search. For
training such a network, referred to as a Q network in their
paper, they generate each training example by either running
beam search or using a ground-truth translation (when ap-
propriate) for each source sentence. This approach allows
one to use an arbitrary decoding objective, and yet it still
relies heavily on the log-probability of the underlying neural
translation system in actual decoding.

The proposed framework and the GGD algorithm are
also directly motivated by Generative Adversarial Networks
(GANs), which are one of the popular generative mod-
els that consist of discriminative and generative networks
(Goodfellow et al. 2014). Energy-based GAN was later
introduced, which uses the energy as the score function
rather than binary score (i.e., predicting whether the input
is real or fake) (Zhao, Mathieu, and LeCun 2016). The
GAN style of training has been widely applied in vision
domain (Radford, Metz, and Chintala, 2015; Im et al.,
2016a,b). There are only few works where GAN style of
training is applied to sequential modeling (Yu et al. 2016;
Kusner and Hernández-Lobato 2016) and machine transla-
tion. To the best of our knowledge, we are the first to ap-
ply Gumbel-softmax relaxation in a generator-discriminator
framework for training neural machine translation. The clos-
est work to ours is (Kusner and Hernández-Lobato 2016),
which applies GAN for modeling simple sequences, and they
also applied the Gumbel-Softmax to GAN. However, their
problem setup and the training framework differ from ours
in a sense that, i) their discriminator is exactly the same as
the classical GAN, whereas our GAN is more close to the
energy-based GAN; ii) they only apply to synthetic dataset,
whereas we apply it to NMT with a large scale parallel cor-
pora. The application of Gumbel distribution can also be
seen in (Papandreou and Yuille 2011).
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Conclusion

We studied learning the neural machine translation decod-
ing in a differentiable way. Our solution was to use the
Gumbel-Softmax reparameterization trick, which makes our
generative network differentiable and can be trained through
standard stochastic gradient methods. We empirically demon-
strate that our proposed model is effective for generating
sequence of discrete words. In the future work, we hope
to explore adversarial learning using different reward func-
tions with GGD. This includes both differentiable and non-
differentiable rewards.
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