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Figure 1: Left is the generation process, where a diffusion model samples a triplane which can be used for image rendering. Right are the
examples of controllable generation given various conditioning inputs, showing generated frontal and side views from Control3Diff. The
faces shown are all generated by models without real identities due to concerns about individual consent except for the input in (a).

Abstract

Diffusion models have recently become the de-facto ap-
proach for generative modeling in the 2D domain. However,
extending diffusion models to 3D is challenging, due to the
difficulties in acquiring 3D ground truth data for training.
On the other hand, 3D GANs that integrate implicit 3D rep-
resentations into GANs have shown remarkable 3D-aware
generation when trained only on single-view image datasets.
However, 3D GANs do not provide straightforward ways
to precisely control image synthesis. To address these chal-
lenges, We present Control3Diff, a 3D diffusion model that
combines the strengths of diffusion models and 3D GANs for
versatile controllable 3D-aware image synthesis for single-
view datasets. Control3Diff explicitly models the underly-
ing latent distribution (optionally conditioned on external

inputs), thus enabling direct control during the diffusion pro-
cess. Moreover, our approach is general and applicable to
any types of controlling inputs, allowing us to train it with
the same diffusion objective without any auxiliary supervi-
sion. We validate the efficacy of Control3Diff on standard
image generation benchmarks including FFHQ, AFHQ, and
ShapeNet, using various conditioning inputs such as images,
sketches, and text prompts. Please see the project website
(https://jiataogu.me/control3diff) for video
comparisons.

1. Introduction

The synthesis of photo-realistic 3D-aware images of
real-world scenes from sparse controlling inputs is a long-
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standing problem in both computer vision and computer
graphics, with various applications including robotics sim-
ulation, gaming, and virtual reality. Depending on the task,
sparse inputs can be single-view images, guiding poses, or
text instructions, and the objective is to recover 3D represen-
tations and synthesize consistent images from novel view-
points. This is a challenging problem, as the sparse inputs
typically contain insufficient information to predict complete
3D details. Consequently, the selection of an appropriate
prior during controllable generation is crucial for resolving
uncertainties. Recently, significant progress has been made in
the field of 2D image generation through the use of diffusion-
based generative models [87, 31, 89, 20], which learn the
prior and have achieved remarkable success in various con-
ditional applications such as super-resolution [77, 49, 27],
in-painting [54], image translation [75, 100] and text-guided
synthesis [70, 73, 76, 30]. It is natural to consider applying
similar approaches in 3D generation. However, learning dif-
fusion models typically relies heavily on the availability of
ground-truth data, which is not commonly available for 3D
content, especially for single-view images.

To address this limitation, we propose a framework
called Control3Diff, which links diffusion models to gen-
erative adversarial networks (GANs) [23] and takes advan-
tage of the success of GANs in 3D-aware image synthe-
sis [81, 10, 62, 25, 11, 64, 86]. The core idea behind 3D
GANs is to learn a generator based on neural fields that fuse
3D inductive bias in modeling with volume rendering. By
training 3D GANs on single-view data with random noises
and viewpoints as inputs, we can avoid the need for 3D
ground truth. Our proposed framework Control3Diff pre-
dicts the internal states of 3D GANs given any conditioning
inputs by modeling the prior distribution of the underlying
manifolds of real data using diffusion models. Furthermore,
the proposed framework can be trained on synthetic gener-
ation from a 3D GAN, allowing for infinite examples to be
used for training without worrying about over-fitting. Finally,
by applying the guidance techniques [20, 32] in 2D diffu-
sion models, we are able to learn controllable 3D generation
with a single loss function for all conditional tasks. This
eliminates the use of ad-hoc supervisions and constraints
which were commonly needed in existing conditional 3D
generation [8, 19].

To validate the proposed framework, we use a variant
of the recently proposed EG3D [11] that learns an efficient
tri-plane representation as the basis for Control3Diff. We
extensively conduct experiments on six types of inputs and
demonstrate the effectiveness of Control3Diff on standard
benchmarks including FFHQ, AFHQ-cat, and Shapenet.

2. Preliminaries: Controllable Image Synthesis
In this section, we first define the problem of controllable

image synthesis in 2D and 3D-aware manners and review

the 2D solutions with diffusion models. Then, we pose the
difficulties of applying similar methods to 3D scenario.

2.1. Definition

2D. The goal of controllable synthesis is to learn a genera-
tive model that synthesizes diverse 2D images x conditioned
on an input control signal c. This can be mainly done by
sampling images in the following two ways:

x ∼ exp [−ℓ(c,x)] · pθ(x) Or pθ(x|c), (1)

where θ is the parameters of the generative model. The for-
mer one is called guidance. At test-time, an energy function
ℓ(c,x) is to measure the alignment between the synthesized
image x and the input c to guide the prior generation pθ(x).
Note that, only for the controllable tasks where the energy
function ℓ(c,x) can be defined, the guidance techniques can
be applied. The latter one directly formulates it as a condi-
tional generation problem pθ(x|c) if the paired data (x, c)
is available. As c typically contains less information than x,
it is crucial to handle uncertainties with generative models.

3D. The above formulation can be simply extended to 3D.
In this work, we assume a 3D scene represented by latent
representation z, and we synthesize 3D-consistent images
by rendering x = R(z, π) given different camera poses
π. Here, we do not restrict the space of z, meaning that it
can be any high-dimensional structure that describes the 3D
scene. Similarly, we can define 3D-aware controllable image
synthesis by replacing x with z in Eq. (1).

2.2. Diffusion Models

Standard diffusion models [87, 89, 31] are explicit gen-
erative models defined by a Markovian process. Given an
image x, a diffusion model defines continuous time latent
variables {zt|t ∈ [0, 1], z0 = x} based on a fixed schedule
{αt, σt}: q(zt|zs) = N (zt;αt|szs, σ

2
t|sI), 0 ≤ s < t ≤ 1,

where αt|s = αt/αs, σ
2
t|s = σ2

t − α2
t|sσ

2
s . Following this

definition, we can easily derive the latent zt at any time by
q(zt|z0) = N (zt;αtz0, σ

2
t I). The model θ then learns the

reverse process by denoising zt to the clean target x with a
weighted reconstruction loss Lθ:

LDiff = Ezt∼q(zt|z0),t∼[0,1]

[
ωt · ∥zθ(zt)− z0∥22

]
. (2)

Typically, θ is parameterized as a U-Net [74, 31] or ViT [66].
Sampling from a learned model pθ can be performed using
ancestral sampling rules [31] – staring with pure Gaussian
noise z1 ∼ N (0, I), we sample s, t following a uniformly
spaced sequence from 1 to 0:

zs = αszθ(zt)+
√
σ2
s − σ̄2ϵθ(zt)+σ̄ϵ, ϵ ∼ N (0, I), (3)

where σ̄ = σsσt|s/σt and ϵθ(zt) = (zt − αtzθ(zt))/σt.
By decomposing the sophisticated generative process into
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Figure 2: ↑ Comparison between reconstruction-based and GAN-
based approaches for obtaining latents z for learning the LDM; ↓
learned samples from auto-decoders generally have lower quality
than 3D GANs due to regularization and optimization difficulties.

hundreds of denoising steps, diffusion models effectively
expand the modeling capacity, and have been shown superior
performance than other types of generative models [20]. For
better efficiency, Latent Diffusion Models (LDM [73]) have
extended the process in latent space by learning an additional
encoder z0 = E(x) to map input images to the latent space.

Due to the autoregressive nature, diffusion models are
suitable for controllable generation (§ 2.1). Prior research
studied guidance with a variety of classifiers, constraints
or auxiliary loss functions [20, 44, 17, 24, 33, 26, 5]. Other
works explored learning conditional diffusion models with
parallel data (e.g., class labels [32], text prompts [73],
aligned image maps [100]). Importantly, classifier-free guid-
ance [32], which enables generation with a balance between
sampling controlled quality and diversity, has become a basic
building block for large-scale diffusion models [76, 70].

2.3. 3D-aware Image Synthesis

When extending image synthesis to 3D, one can model
each 3D scene, which corresponds to a latent representation
z (§ 2.1), as a neural radiance field (NeRF [57]) fz : R5 →
R4

+ which maps every spatial point and the viewing direction
to its radiance and density. fz is parameterized as MLPs [57]
or tri-planes [11, 14] with upsamplers [62, 25]. Next, we can
synthesize 3D-consistent images via volume rendering [56].

Despite the success in the 2D scenario, diffusion models
have rarely been applied directly in controllable 3D-aware
image synthesis with NeRF. There are three key challenges:

1. Learning diffusion models requires the 3D ground-truth
z (shown in Eq. (2)) that is often unavailable.

2. While there exist approaches to acquire high-quality 3D
labels from dense multi-view image collections, for most
of the cases, only single-view images are available.

3. As discussed in § 2.1, we need either an energy function
ℓ(., .) for guidance or paired data for conditional gener-
ation in controllable synthesis. However, both of them
are not straightforward to define in the latent space of
implicit 3D representations (e.g., NeRF).

More precisely, targeting on Challenge # 1, prior arts [6, 83,
60, 94] first reconstruct the latent z from dense multi-view
images of each scene. In the rest of paper, we refer to them as
reconstruction-based methods. That is, given a set of posed
images {xi}Ni=1, one can minimize:

LRC = E{xi}∼data

[∑
i

∥R(z, πi)− xi∥22 +H(z)

]
, (4)

where πi is the camera of xi, R is the differentiable volume
renderer of fz , and H is the prior regularization over z. Here,
z = E({xi}Ni=1) represents either the backward process of
∇zLrecon (also known as “auto-decoder” [85]) that updates
z via SGD, or an amortized multi-view encoder [48, 78].

In spite of the good results with dense multi-view data for
training, these methods perform poorly when only one view
is available for each scene (Challenge #2). Single-view auto-
decoders usually fail to learn geometry, even with strong
regularization [71], the reconstructed quality is still limited.
On the other side, using an encoder E(x) may ease the afore-
mentioned issues after adopting various auxiliary losses with
novel-view rendering [8]. Yet, due to limited view coverage
and object occlusion, an image encoder is unable to predict
fully determined 3D details, resulting in additional uncertain-
ties. We illustrate a comparison in Fig. 2. Besides Challenge
#1 and #2, #3 has rarely been studied in prior research. In
the next section, we will elaborate on how we address these
challenges to achieve controllable 3D-aware image synthesis
with only single-view images for training.

3. Method: Control3Diff

We present Control3Diff, a controllable 3D-aware gen-
eration framework based on a 3D GAN (§ 3.1). We study
two ways of controlling image synthesis with Control3Diff
(§§ 3.2 and 3.3). The pipeline is illustrated in Fig. 3.

3.1. Latent Diffusion with 3D GANs

Instead of acquiring z from dense multi-view images
{xi} as done in reconstruction-based methods, we directly
sample from the learned distribution of z of a 3D GAN
model, which is trained on single-view images. In this paper,
considering its state-of-the-art performance, we build Con-
trol3Diff based on EG3D [11]. EG3D first learns a tri-plane
generator G : u ∈ R512 → z ∈ R3×256×256×32, mapping
low-dimensional noises to an expressive tri-plane. The fea-
ture of a 3D point is obtained by projecting the point to three
orthogonal planes and gathering local features from the three
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Figure 3: Pipeline of Control3Diff. (a) 3D GAN training; (b) Diffusion model trained on the extracted tri-planes can be trained with or
without the input conditioning; (c) controllable 3D generation with the learned diffusion model, optionally with guidance. The tri-plane
features are presented in three color planes, and the camera poses are omitted for better visual convenience.

planes, which is the input to the radiance function fz for
radiance and density prediction.

Training an EG3D model requires a joint optimization
of a camera-conditioned discriminator D, and we adopt the
non-saturating logistic objective with R1 regularization:

LGAN = Eu∼N (0,I),π∼Π [h (D(R (G(u), π) , π)]
+Ex,π∼data

[
h (−D(x, π)) + γ∥∇xD(x, π)∥22

]
,

(5)

where h = − log(1 + exp(−u)) and Π is the prior camera
distribution. The adversarial learning enables the training
on single-view images, as it only forces the model output to
match the training data distribution rather than learns a one-
to-one mapping as an auto-encoder. Note that, in order to
train diffusion models more stable, besides Eq. (5), we also
bound G(u) with tanh(.) and apply an additional L2 loss
similar to [83] when training EG3D. However, we observed
in our experiments that these additional constraints would
not affect the performance of EG3D.

After EG3D is trained, as the second stage, we apply the
denoising on the tri-plane to train a diffusion model with
the renderer R frozen. Training follows the same denoising
objective Eq. (2) and z0 = G(u). As u is randomly sam-
pled, we can essentially learn from unlimited data. Different
from [60, 94], we do not need any auxiliary loss or additional
architectural change. Optionally, we can add the control sig-
nal as the conditioning to the diffusion network to formulate
a conditional generation framework for controlling (§ 3.2).

We note that, training a diffusion model over G(u) sam-
ples differs from distilling a pre-trained GAN into another
GAN generator, which is unsuitable for the controlling tasks.

Although it is efficient to sample high-quality tri-planes z,
GANs are implicit generative models [58] and do not model
the likelihood in the learned latent space. That is to say, we
do not have a proper prior p(z) given the latent represen-
tations of a 3D GAN. Especially in the high-dimensional
space like tri-planes, any control without knowing the un-
derlying density will easily fall off the learned manifold
and output degenerated results. As a result, almost all ex-
isting works [8, 19] utilize 3D GANs for controlling the
focus on low-dimensional spaces, which can be approxi-
mately assumed Gaussian. However, this has to scarify the
controllability. In contrast, diffusion models explicitly learn
the score functions of the latent distribution even with high-
dimensionality [89], which fills in the missing pieces for 3D
GANs. Also see experimental comparison in Table 1.

3.2. Conditional 3D Diffusion

We can synthesize controllable images by extending la-
tent diffusion into a conditional generation framework. Con-
ventionally, learning such conditional models requires label-
ing parallel corpus, e.g., large-scale text-image pairs [80] for
the Text-to-Image task. Compared to acquiring 2D paired
data, creating the paired data of the control signal and 3D
representation is much more difficult. In our method, how-
ever, we can easily synthesize an infinite number of pairs of
the control signal and triplanes by using the rendered images
of the triplane from 3D GAN to predict the control signal
with an off-the-shelf method. Now, the learning objective



can be written as follows:

LCond = Ez0,zt,t,π

[
ωt · ∥zθ(zt,A (R(z0, π)))− z0∥22

]
.

(6)
where z0 = G(u) is the sampled tri-plane, A is the off-the-
shelf prediction module that converts rendered images into
c (e.g., “edge-detector” for edge-map to 3D generation), and
π ∼ Π is a pre-defined camera distribution based on the
testing preference. Here zθ represents a conditional denoiser
that learns to predict denoised tri-planes given the condi-
tion. In early exploration, we noticed that the prior camera
distribution Π significantly impacts the generalizability of
the learned model, where for some datasets (e.g., FFHQ,
AFHQ), the biased camera distribution in training set would
cause degenerated results for rare camera views. Therefore,
we specifically re-sample the cameras for these datasets.

Joint Diffusion with Camera Pose πc Conditional models
can be learned without camera input, which implicitly maps
the input view to the global triplane space. It implies that
conditional models can predict camera information through
diffusion. In light of this observation, we propose to jointly
predict the input camera pose πc with z in one diffusion
framework. Similar to 3D-aware generation, predicting cam-
eras from a single view is also a challenging problem, re-
quiring resolving ambiguities in natural images. At the same
time, previous works either rely on external deterministic
camera predictors [52] or optimize the cameras at inference
time [46]. In this work, for simplicity, we flatten πc into a
vector, broadcast it, and concatenate it to the channels of z
as the new diffusion target.

3.3. Guided 3D Diffusion

An alternative way to control image synthesis is to fol-
low a similar recipe in 2D (as defined in § 2.1) to perform
test-time guidance based on a task-specific energy function
ℓ(c, z). Nevertheless, directly defining such an energy func-
tion between c and 3D representation (i.e., a tri-plane NeRF)
is challenging. We circumvent this by defining ℓ(., .) to mea-
sure the closeness between c and the differentiablly rendered
image R(z, πc). In this way, we can learn the 3D represen-
tation using 2D rendering guidance (e.g., CLIP score [68]
for text-to-3D, and MSE or perceptual loss [103] for image
inversion). Using 2D guidance for learning 3D representa-
tion is reasonable since the final targets of most controlling
tasks we care about are images synthesized from certain
viewpoints. The 2D rendering guidance can be implemented
efficiently via replacing zθ(zt) in Eq. (3) with ẑθ(zt) as:

ẑθ(zt) = zθ(zt)− wt∇ztℓ [c,R(zθ(zt), πc)] , (7)

where zθ is the denoised tri-plane derived from the uncondi-
tional prior, wt is the time-dependent weight.

Langevin correction steps While the 2D rendering guid-
ance can provide a gradient to learning 3D representations,
the optimization is not often stable due to the nonlinearity of
mapping from 2D to 3D. Our initial experiments showed that
early guidance steps get stuck in a local minimum with incor-
rect geometry prediction, which is hard to correct in the later
denoising stage when the noise level decreases. Therefore,
we adopt similar ideas from the predictor-corrector [90, 33]
to include additional Langevin correction steps before the
diffusion step (Eq. (3)):

zt = zt −
1

2
δσtϵ̂θ(zt) +

√
δσtϵ

′, ϵ′ ∼ N (0, I), (8)

where δ is the step size, and ϵ̂θ is derived from ẑθ in Eq. (7).
According to Langevin MCMC [55], the additional steps
help zt match the marginal distribution given certain σt.

Discussion: Conditioning v.s. Guidance Compared to
guidance methods in § 3.3, training a conditional 3D dif-
fusion model has several benefits. First, in guided diffu-
sion, a proper-designed differentiable ℓ(., .) is necessary to
back-propagate the gradient guidance to the diffusion model,
which, however, is not available for all kinds of conditional
tasks. In contrast, conditional models do not have such re-
quirements and can adapt any conditional distribution. Also,
conditioning is computationally more efficient because the
guidance requires rendering and back-propagating through
the volume renderer R at each step. However, conditioning
methods have a possible issue. As we train our models based
on the images generated by a pretrained 3D GAN (Eq. (6)),
the learned p(z|c) probably has domain gaps between real
images and synthesized images. In such a case, guidance-
based methods become more reliable as ℓ is directly com-
puted upon real controls.

Optionally, we can combine the best of both worlds when
ℓ is available. For instance, we learn a conditional diffusion
model and generate samples jointly with guidance (see Fig. 3
(c)). This paradigm can also be used when the test camera
is not given: the guidance is used to update the camera πc

predicted by the aforementioned conditional model.

4. Experiments

4.1. Experimental Settings

Dataset & Tasks We evaluate Control3Diff on three stan-
dard image generation benchmarks – FFHQ (5122) [41],
AFHQ-cat (5122) [16], and ShapeNet (1282) [85] including
two categories Cars and Chairs. Following EG3D [11], each
image is associated with its camera pose. We consider six
controllable 3D-aware generation tasks. For all datasets, we
test the standard image-to-3D inversion (original resolution
and low-resolution inputs) and edge-map to 3D generations.
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Figure 4: Comparison for 3D-inversion of in-the-wild images. We compare the proposed approach to direct prediction of the GAN’s latent
W and Tri-plane with a learned encoder, as well as an optimization based approach to infer the latent and expanded latent W , W+, as well
as the Tri-plane, following [2]. Our method achieves better view consistency with higher output image quality compared to baselines.

Table 1: Quantitative comparison on inversion. Although optimizing the Tri-plane model can fit input views well, it falls short in generating
realistic novel view images. Overall, our method achieves the best performance.

FFHQ AFHQ-Cat

PSNR ↑ SSIM ↑ LPIPS↓ ID↑ nvFID ↓ nvKID ↑ nvID↑ PSNR↑ SSIM ↑ LPIPS↓ nvFID ↓ nvKID ↑

Opt.
W 15.93 0.68 0.42 0.60 39.26 0.023 0.57 16.08 0.57 0.42 9.15 0.004
W+ 17.91 0.73 0.34 0.74 38.23 0.022 0.68 18.32 0.62 0.35 10.54 0.006
Tri. 18.32 0.78 0.11 0.92 138.0 0.154 0.54 17.53 0.71 0.14 98.79 0.085

Pred. W 14.82 0.64 0.54 0.37 45.06 0.018 0.35 14.56 0.52 0.55 20.87 0.006

Ours 22.30 0.79 0.23 0.89 13.48 0.005 0.81 20.11 0.66 0.24 7.03 0.003

LR Imape Input Opt. W Opt. W+ Opt. Tri-plane Ours

Figure 5: Comparison on the SR+inversion task. By learning the
proper prior with diffusion models, Control3Diff is able to syn-
thesize realistic and faithful cat faces from low-resolution inputs,
while optimization-based approaches fail completely due to the
lack of proper 3D prior.

For faces, we further explored segmentation to 3D, head-
shape to 3D and text-description to 3D tasks to validate the
controllability at various levels. To compare with previous
work [19] for Seg-to-3D, we additionally train one model on

CelebA-HQ [38]. Besides, we also report performance on
unconditional generation with guidance in the ablation.

Baselines We choose the standard optimization-based and
encoder-based [92, 47] approaches for image-to-3D inver-
sion, and the recent Pix2Pix3D [19] as the major baseline to
compare on the Seg-to-3D task. Note that we do not focus on
achieving the state-of-the-art on a single task like inversion,
but rather to highlight the potential of our generic frame-
work in 3D-aware generation. Thus, our comparison limits
to methods without fine-tuning the model weights [72].

Evaluation Metrics For image synthesis quality, we re-
port five standard metrics: PSNR, SSIM, SG diversity [13],
LPIPS [103], KID, and FID [29]. For face, we compute the
cosine similarity of the facial embeddings generated by the



Table 2: Quantitative comparison on Seg2Face and Seg2Cat.

task Seg2Face Seg2Cat

metric FID↓ SG↑ mIoU↑ MPA↑ FID↓ SG↑ mIoU↑ MPA↑

p2p3D 21.28 0.46 0.52 0.63 15.46 0.50 0.64 0.76
ours 12.85 0.43 0.61 0.72 11.66 0.47 0.67 0.79

facial recognition network for a given pair of faces, utilizing
it as ID metric. In the context of conditional generation tasks,
following Pix2Pix3D [19], we evaluate methods using mean
Intersection-over-Union (mIoU) and mean pixel accuracy
(MPA) for segmentation maps.

Implementation Details We implemented all our models
based on the standard U-Net architectures [20] where for
conditional diffusion models, an U-Net-based encoder is
adopted to encode the input image similar to [26], see Fig. 3
(b). We include the hyper-parameter details in Appendix.

4.2. Image-to-3D Inversion

In this section, we evaluate Control3Diff on 3D inversion
tasks, comparing our methods in two cases: (1) standard
inversion and (2) a more challenging 3D super-resolution
task. To establish a baseline, we directly optimize the low-
dimensional latent vectors (W , W+)*, following [2], as well
as triplanes. As conventional GANs do not have learned pri-
ors in these spaces, optimization is performed with noise
injection regularization. We also employ an encoder-based
approach [47] that directly predicts W or triplanes. To pre-
dict triplanes, we train a separate encoder.

The results are shown in Table 1 and Fig. 4 where our
methods significantly outperform the other methods in terms
of both image quality and identity consistency. While direct
optimization of triplanes may yield higher accuracy in the
input view, it always results in collapsed novel view results
due to a lack of prior. We also show the visual comparisons
for 3D super-resolution in Fig. 5 where our diffusion-based
approaches show more gains.

4.3. Seg-to-3D & Edge-to-3D Synthesis

We evaluate our methods on more general conditional 3D
generation tasks where the input control is not necessarily
the target view, e.g., Seg-to-3D and Edge-to-3D tasks. For
the Seg-to-3D task, we train two additional parsing networks
[99] with labels provided by Pix2Pix3D [19], where the
segmentation ground-truth of cats is obtained via clustering
the DINO feature as proposed by [3]. It has been observed
that this clustering scheme adversely affects the performance

*W , W+ refers to the compact and expanded latent space of the GAN,
respectively. See [2] for details.
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Figure 6: Comparison on Seg-to-3D generation. All faces are
model generated, and are not real identities. Our proposed
method generates images that achieve improved alignment with the
segmentation map and greater 3D consistency.
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Figure 7: Qualitative results on Edge-to-3D generation on all three
datasets. All faces are model generated.

of cat-parsing networks, resulting in lower accuracy than
that achieved by face-parsing networks.

The results of our evaluation are presented in Table 2,
which indicates that our method generates images with com-
parable alignment and quality. Furthermore, as illustrated
in Fig. 6, our method is capable of producing more realistic
faces in novel views. Additionally, our model successfully
generates consistent 3D objects by taking as input edge maps,
as illustrated in Fig. 6.

4.4. Text-to-3D Synthesis

We demonstrate the versatility of our framework by ap-
plying it to text-to-3D generation. The qualitative results
are shown in Fig. 8. For (a)-(c), we train Control3Diff as a



(a) (b) (c) (d)

Figure 8: Qualitative results on Text-to-3D synthesis based on given prompts: (a) A middle-aged woman with curly brown hair and pink lips;
(b) A middle-aged man with a receding hairline, a thick beard, and hazel eyes; (c) A young woman with freckles on her cheeks and brown
hair in a pixie cut; (d) a photography of Joker’s face. All faces are model generated, and are not real identities.
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Figure 9: Comparison between conditional and guided diffusion.

conditional diffusion model where we adopt the normalized
CLIP embedding of the model’s rendering as conditioning.
In test time, such a model can be seamlessly switched to
text-control thanks to the multi-modal space of CLIP. We
also conduct experiments with text feature guidance in (d),
where we directly apply a pre-trained 2D diffusion model as
a score function similar to DreamFusion [67], and guide the
generation of an unconditional 3D diffusion model.

4.5. Ablation Study

We conducted an ablation study on the task of Image-
to-3D inversion, evaluating the effects of conditioning and
guidance on the visual performance of our method. As illus-
trated in Fig. 9, our results demonstrate that the inclusion of
conditioning and guidance leads to superior visual perfor-
mance, while their absence results in artifacts and an inability
to fit target images. More specifically, if we only apply guid-
ance on unconditional models, the generated outputs seem to
have artifacts. On the other hand, when using the conditional
model only, the model is unable to recover all details from
the input image especially for background.

5. Related Work
Diffusion for 3D-aware Generation There have been re-
cent attempts [95, 6, 61, 59, 4, 84, 15] to extend diffusion
models to 3D. The key challenge here is to obtain 3D ground
truth for training. Most works tackle this challenge by re-

constructing 3D ground truth from dense multi-view data.
Instead, our method can be trained only on single-view data
by using a 3D GAN to synthesize infinite ground-truth 3D
data. Another line of work [67, 93, 104, 18, 26] applies 2D
diffusion priors to the sparse-view reconstruction or text-to-
3D generation tasks. For example, NerfDiff [26] applies a
test-time optimization by distilling 2D diffusion priors into
NeRF for single-view reconstruction. Different from NerfD-
iff [26], our focus is 3D-aware image synthesis controlled by
various control signals, and we apply denoising directly in
3D. Furthermore, our method can be trained on single-view
datasets without the need of multi-view data.

Controllable Image Synthesis with GANs Conventional
GANs [22, 41, 42] can generate photo-realistic images from
low-dimensional randomly sampled latent vectors, but have
limited controllability. Follow-up works enable controllabil-
ity by either adding conditioning input along with the sam-
pled vectors as input (named ”Conditional GAN”) [35, 65]
or manipulating the sampled vectors [82, 28, 105]. These
works only focus on 2D image synthesis with control,
which cannot explicitly control 3D properties (e.g., cam-
eras) and synthesize multi-view consistent images. Recently,
3D-GANs [81, 11, 12, 63, 25, 97] have been developed by in-
tegrating 3D representation and rendering into GANs. While
these models can control 3D properties by manipulating the
latent vectors, their controllability is limited to global cam-
era poses or geometry. Many works [37, 91, 7, 36] support
fine-grained geometry editing, but most of them have only
demonstrated results on human face or body. Other condi-
tional 3D GANs for general objects [8, 19] need additional
constraints or architecture changes, however, their synthesis
quality is still limited. In contrast, our method allows a vari-
ety of control signals (e.g., segmentation map) for fine-level
3D-aware image synthesis on various kinds of objects.

6. Conclusion
In summary, we propose Control3Diff, a versatile ap-

proach for 3D-aware image synthesis that combines the



strengths of 3D GANs and diffusion models. Our method
enables precise control over image synthesis by explicitly
modeling the underlying latent distribution. We validate our
approach on standard benchmarks, demonstrating its effi-
cacy with various types of conditioning inputs. Control3Diff
represents a significant advancement in generative modeling
in 3D, opening up new research possibilities in this area.
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Appendix
A. Dataset Details
FFHQ contains 70k images of real human faces in reso-
lution of 10242. We directly adopted the downsampled, re-
aligned version provided by EG3D [11], which re-cropped
the face and estimate the camera poses.

AFHQ-cat contains in total 5K images of cat faces in res-
olution of 5122. The same as FFHQ, we directly download
the data with estimated camera poses.

ShapeNet Cars & Chairs are standard benchmarks for
single-image view synthesis [85]. We use the data modified
by pixelNeRF [98] †. The chairs dataset consists of 6591
scenes, and the cars dataset has 3514 scenes, both with a
predefined train/val/test split. Each training scene contains
50 posed images taken from random points on a sphere.
Each testing scene contains 250 posed images taken on an
Archimedean spiral along the sphere. All images are ren-
dered at a resolution of 1282.

CelebA-HQ Dataset [38] is comprised of 30,000 high-
resolution images, each with dimensions of 10242 pixels.
For the Seg-to-3D task, we utilize camera poses and labels
supplied by Pix2Pix3D [19].

StyleGAN3-synthetic . Owing to concerns regarding indi-
vidual consent, we utilize the StyleGAN3 [40] algorithm to
synthesize 165 images that subsequently facilitate qualitative
analysis and video production. This methodology adheres to
ethical guidelines while effectively enabling the visualiza-
tion and evaluation of our findings. We adhere to the same
pre-processing procedure utilized by EG3D [11] for these
synthetic images. This approach involves re-centering the
faces and estimating the camera positions, thus ensuring a
consistent methodology across datasets.

B. Implementation Details
B.1. 3D GAN Settings

Model Our method is largely based on EG3D [11] ‡ which
adopts tri-plane representations to achieve efficient rendering
process. We use the same hyper-parameters as stated in the
original paper [11], where the triplane dimensions are set
3 × 256 × 256 × 32 for all datasets. To stabilize training
of diffusion models, we constraints the value of triplanes
by bounding its values to (−1, 1) with tanh(.). We set the
neural rendering resolution to be 128× 128 for FFHQ and
AFHQ-cat following a ×8 2D-upsampler, while 64× 64 for
ShapeNet Cars and Chairs following a ×2 2D-upsampler.

†https://github.com/sxyu/pixel-nerf
‡https://github.com/NVlabs/eg3d.git

Training We follow similar recipes [11] for training EG3D
models on four datasets. For FFHQ and ShapeNet, we train
EG3D from scratch with γ = 1 and γ = 0.3, respectively.
We first train FFHQ model at 64×64 resolution for 25M im-
ages, and another 2.5M images at 128× 128. For ShapeNet,
we train both datasets with 10M images. AFHQ-cat is a much
smaller set, so we fine-tune the FFHQ checkpoint directly
at 128 × 128 with γ = 5 and data augmentation [39] for
4.5M images. We additionally train an EG3D model on Cele-
bAHQ for comparing on Seg-to-3D tasks. For this model,
we fine-tune from the pre-trained FFHQ checkpoint with
cameras provided by [19]. Both human and cat face mod-
els are trained with “generator pose conditioning (GPC)”.
Moreover, to encourage a smooth learned tri-plane space,
we apply an additional regularization over the L2 norm over
the tri-plane with weight λ = 1 for all experiments. We use
a batch size of 32 on 8 NIVIDA A100 GPUs, and training
approximately takes 3 days for 25M images.

Inference The trained EG3D models are used in both 3D
diffusion training & inference. More precisely, we keep the
neural renderer (NeRF MLPs + 2D upsamplers, see Fig. 1
for illustration) as the final stage of the tri-plane diffusion,
which renders the denoised tri-plane into images given the
camera input. To make sure the rendering solely depending
on the tri-plane and viewing directions, we adopt the center-
camera for GPC, and input the EMA style vector wavg as
well as constant noise to the upsamplers. We did not notice
any quality difference by replacing with the average vectors.

B.2. 3D Diffusion Settings

Unconditional Model We use the improved UNet-based
architecture [74, 20] for all of our main experiments of tri-
plane space diffusion. In the exploration stage, we also tried
different architectures such as Transformers [66], however,
we did not notice significant difference on generation, and
keep UNet as the basic backbone. Since the tri-plane size
is fixed across various datasets, we apply exactly the same
architecture and hyperparameters for all experiments. Our
initial experiments showed that predicting the noise ϵ (de-
fault setting as suggested by DDPM [31]) or the velocity
v [79] tend to produce noticeable high-frequency artifacts
on the generated tri-planes. We suspect it is due to the tri-
plane space is naturally noisier than images, and all our
models are trained with the signal z0 prediction as presented
in Eq. (2) with ωt = Sigmoid(log(α2

t /σ
2
t )).

Conditional Model The main settings of conditional diffu-
sion models are identical to the unconditional models, except
for the interaction module between the conditioning input.
For tasks like 3D inversion, 3D SR, Seg-to-3D and Edge-
to-3D, we transform the input into RGB images, resize the
spatial resolution into 256 × 256. Then we jointly train a
UNet-based encoder which has the same number of layers

https://github.com/sxyu/pixel-nerf
https://github.com/NVlabs/eg3d.git


and hidden dimensions as the denoiser. Note that, due to the
use of self-attention layers [20], the UNet-based encoder is
able to globally adjust the features even the input images are
not spatially aligned with the canonical tri-plane space. Ad-
ditionally, similar to [96, 26], we include a cross-attention
layer between each self-attention outputs of the encoder
and denoiser to strengthen the conditional modeling. On the
other hand, for both the Shape-to-3D and Text-to-3D (with
CLIP) tasks, we do not train another encoder, but treating
the conditioning as vectors which are linearly transformed
and combined with the time-embeddings.

Training We adopt the same training scheme for all our dif-
fusion experiments including unconditional and conditional
cases, which uses AdamW [53] optimizer with a learning rate
of 2e− 5 and a EMA decaying rate of 0.9999. To encourage
our high-resolution denosier to learn sufficiently on noisy
tri-planes, we adopt a shifted cosine schedule (2562 → 642)
inspired by [34]. We train all models with a batch size of 32
for 500K iterations on 8 NVIDIA A100 GPUs.

Conditioning camera As pointed out in § 3.2, it is critical
to train conditional diffusion models with balanced camera
poses, wheres the camera viewpoints from natural images
(e.g., FFHQ, AFHQ) are typically biased toward the center
view. Unlike training 3D GANs where matching the camera
distribution is important for learning the 3D space, we found
it crucial to have an unbiased input camera distribution when
the 3D space is already learned. Otherwise, the performance
of conditional generation degenerates heavily when the input
image is not center-aligned. Therefore, for human and cat
faces, we re-sample the input cameras which looks at the
origin and distributes uniformly. To simulate errors in camera
prediction, we augment the intrinsic matrix (focal length,
fx, fy) with random Gaussian noises. We do not perform
resampling and directly use the training set cameras for
ShapeNet as it already covers all viewpoints uniformly.

Sampling Due to the requirements of proper score func-
tion ℓ(., .), we only explored guided diffusion for 3D inver-
sion and supper-resolution, while for the remaining tasks,
we use the standard sampling strategy. No classifier-free
guidance [32] is applied. By default, the standard ancestral
sampling [31] takes 250 denoising steps for all of the ex-
periments. For 3D inversion, we choose ℓ(., .) to be VGG
loss [101] with wt = 7e5 · σt in Eq. (7). We notice that it is
essential to use a large decreasing weight to take effective
guidance. For supper-resolution tasks, we use exactly the
same objective for guidance, while the loss is computed after
down-sampling the rendered image into the input resolution.
For cases using Langevin correction, we additionally apply
10 correction steps as described in Eq. (8) where δ = 0.25.
We only add Langevin steps for the first 50 denoising steps

to save computational cost. The Langevin correction steps
are particularly useful for unconditional models.

B.3. Application Details

Image-to-3D Inversion In this task, we independently
and randomly select 1,000 images from both the FFHQ
and AFHQ datasets, with the results presented in the main
paper. To enhance the experimental rigor, we additionally
choose 1,000 random images from the test set of CelebA-HQ
dataset. We follow the EG3D methodology to re-crop the
face and estimate the camera pose for enhanced processing.
The results of CelebA-HQ are presented in Table 3. We select
5 camera poses with yaw angles of -35°, -17°, 0°, 17°, and
35°, and a roll angle of 0° to generate novel view images.
The generated images are employed to compute the Fréchet
Inception Distance (nvFID) to the original dataset and the
ID metric (nvID) in relation to the input image.

Seg-to-3D Following a recent work (Pix2Pix3D [19]), in
the Seg2Face process, we randomly select 500 images from
the CelebA-HQ dataset, accompanied by their segmenta-
tion maps, and generate 10 images per input label using
different random seeds. Subsequently, we predict the seg-
mentation map for each generated image using a pretrained
face-parsing network [99].In the Seg2Cat task, we employ a
similar setting. The main distinction lies in the segmentation
prediction process. We use the labels from Pix2Pix3D to train
the parsing network and subsequently apply it to predict la-
bels from the generated images. We evaluate the performance
by calculating the mean Intersection over Union (MIOU) and
average pixel accuracy (MPA) between the input labels and
the predicted labels from the generated images. The Fréchet
Inception Distance (FID) is computed between the generated
images and all images in the CelebAHQ dataset. Single Gen-
eration Diversity (SG Diversity) is obtained by measuring
the LPIPS metric between each pair of generated images,
given a single conditional input.

Edge-to-3D We extract the edges for all datasets using
informative drawing [9] §.

Shape-to-3D We employ the FLAME template model [50]
to represent facial shapes and utilize DECA [21] for extract-
ing the corresponding FLAME parameters.

Text-to-3D For this task, we utilize CLIP [69] to extract
image and text features. During the training phase, we em-
ploy the image features, while in the testing phase, we di-
rectly use the text features. While it is commonly known that
the text and image spaces of CLIP are not fully aligned [70],
we find the conditioning is effective as long as both features
are normalized before diffusion.

§https://github.com/carolineec/
informative-drawings.git

https://github.com/carolineec/informative-drawings.git
https://github.com/carolineec/informative-drawings.git


Table 3: Quantitative comparison on inversion.

CelebA-HQ

PSNR ↑ SSIM ↑ LPIPS↓ ID↑ nvFID ↑ nvID↑

Opt.
W 14.98 0.65 0.42 0.54 60.67 0.50
W+ 16.62 0.71 0.34 0.74 51.23 0.66
Tri. 17.52 0.76 0.12 0.92 185.6 0.50

Pred. W 14.55 0.59 0.54 0.28 68.66 0.26

Ours 21.86 0.78 0.26 0.82 27.76 0.72

B.4. Baseline Details
GAN Inversion Our primary focus is to compare our ap-
proach with prevalent 2D GAN inversion methods, such as
the direct optimization scheme introduced by [43], which
inverts real images into the W space. Additionally, we ex-
amine a related method that extends to the W+ space [1]
and directly optimizes the tri-plane, denoted as Tri.. The
implementation is based on EG3D-projector ¶. We initialize
all methods with the average w derived from the dataset. For
the optimization process, we employ the LPIPS loss [102]
and utilize the Adam optimizer [45], conducting 400 opti-
mization steps for each image. Additionally, we utilize the
encoder proposed by [47] to directly estimate the w values
from images. We employ their pretrained model.

Pix2Pix3D [19] We directly utilize the pretrained check-
points provided by authors ||.

Pix2NeRF [8] We utilize the values provided by the au-
thors for our analysis. However, due to the absence of re-
leased models and quantitative results, our comparison is
limited to the ShapeNet chair dataset.

C. Additional Quantitative Results

Inversion on ShapeNet We include additional quantita-
tive results for ShapeNet Cars & Chairs in Table 4. For both
cases, we follow the standard evaluation protocol which
takes a fixed input view (typically view 64) as input control,
and render from all other cameras. Evaluation is conducted
on the test sets. As the results shown in Table 4, while the
proposed approach significantly improves over the existing
3D-GAN inversion baselines, and achieves high scores on
perceptual scores such as LPIPS and FID, it has a clear
gap compared to PixelNeRF in term of PSNR. The primary
reason for this discrepancy is that PixelNeRF utilizes multi-
view supervision during training, whereas our method relies
solely on single-view information. Consequently, PixelNeRF

¶https://github.com/oneThousand1000/
EG3D-projector

||https://github.com/dunbar12138/pix2pix3D

Figure 10: One failure case for conditional generation tasks on
ShapeNet Chairs. While Control3Diff is always able to generate
high-fidelity 3D objects, it sometimes fails to recover the texture
information from the input view even with guided diffusion.

can achieve improved performance in certain aspects. In con-
trast, our GAN-based approach demonstrates both enhanced
3D consistency and sharper outputs, which contribute to the
lower FID and LPIPS scores.

Additional Results on CelebA-HQ To fully validate the
generality of the proposed method, we conduct additional
3D inversion experiments on out-of-distribution (OOD) face
data. As shown in Table 3, we directly apply the model
trained from the FFHQ tri-plane space onto CelebA-HQ,
and report the single-view inversion performance. Although
tested OOD, the proposed Control3Diff performs stably and
achieves larger gains against standard inversion baselines.

D. Additional Qualitative Results
3D Inversion & SR We show additional qualitative results
of Control3Diff across datasets for both the 3D inversion
(Figs. 11 to 13) and super-resolution (Fig. 14) applications.

Seg-to-3D Editing Fig. 16 presents an application of our
method which supports progressive 3D editing based on 2D
segmentation maps.

Text-to-3D Editing The conditional diffusion of Con-
trol3Diff also supports interactive editing given text prompt,
as demonstrated in Fig. 17.

Shape-to-3D Fig. 15 presents qualitative results on this
task, demonstrating that the generated images can semanti-
cally ensure the preservation of identity. However, the color
exhibits constant fluctuations. The current control mecha-
nisms are unable to effectively disentangle factors such as
lighting.

E. Limitations and Future Work
Our method has two major limitations. First, while learn-

ing from the latent space of GANs allows us effectively learn
controllable diffusion models for 3D, it also brings the draw-
backs that GANs commonly have. For instance, a common
artifact of the adversarial training is that the learned space

https://github.com/oneThousand1000/EG3D-projector
https://github.com/oneThousand1000/EG3D-projector
https://github.com/dunbar12138/pix2pix3D


Figure 11: Qualitative results on 3D inversion for ShapeNet Cars and Chairs.
Table 4: Quantitative comparison on single-image view synthesis on ShapeNet. *Models have multi-view supervision during training, while
our methods including standard optimization-based 3D GAN-inversion baselines are trained with single-view information only.

(a) ShapeNet-Cars

ShapeNet Cars

PSNR ↑ SSIM ↑ LPIPS↓ FID ↓

PixelNeRF [98]∗ 23.17 0.89 0.146 59.24
3DiM [96]∗ 21.01 0.57 – 8.99

Opt. W 17.89 0.85 0.124 33.15
Opt. W+ 19.23 0.86 0.106 17.95
Opt. Tri. 14.85 0.63 0.461 319.8

Ours 21.13 0.89 0.090 8.86

(b) ShapeNet-Chairs

ShapeNet Chair

PSNR ↑ SSIM ↑ LPIPS↓ FID ↓

PixelNeRF [98]∗ 23.72 0.90 0.128 38.49
3DiM [96]∗ 17.05 0.53 – 6.57

Pix2NeRF [8] 18.14 0.84 - 14.31
Opt. W 18.28 0.86 0.110 10.96
Opt. W+ 19.30 0.87 0.099 12.70
Opt. Tri. 14.11 0.64 0.412 237.4

Ours 20.16 0.89 0.090 9.76

typically has mode collapse, which in turn affects the 3D
diffusion learning that it may not cover full data space. In
our experiments, we particularly noticed this collapsing ef-

fect on synthetic datasets with complex geometries such as
ShapeNet (see Fig. 10). As the future work, this issue can
be potentially eased by jointly training the diffusion prior



Figure 12: Qualitative results on 3D inversion for AFHQ-cat. The input images are randomly sampled from the AFHQ training set.

with the 3D-GAN, and including additional image recon-
struction loss. Moreover, comparing to pure encoder-based
approaches [51], the iterative nature of the diffusion mod-
els generally has a slower generation process. However, our
methods can be easily integrated with existing works for
speed-up diffusion models [79]. We leave this exploration as
future work.



Figure 13: Qualitative results on 3D inversion for FFHQ. Due to concerns about individual consent, all the input faces are synthesized and
manually selected from a pre-trained StyleGAN3 [40] checkpoint. We perform exactly the same pre-processing procedure as EG3D [11]
over these synthetic images, which re-centers the faces and estimates the camera positions.



Figure 14: Qualitative results on 3D super-resolution tasks for AFHQ-cat and FFHQ.

Figure 15: Qualitative results on Shape-to-3D for FFHQ. These images can semantically ensure the preservation of identity; however, the
color exhibits constant fluctuations. The current control mechanisms are unable to effectively disentangle factors such as lighting.



Figure 16: Progressive editing of Seg-to-3D synthesis. The input seg-maps are interactively edited. To achieve that, we fix the initial tri-plane
noise and use DDIM [88] to obtain diffusion samples.



Figure 17: Progressive editing of Text-to-3D synthesis. The text prompts will be first transformed to normalized CLIP embeddings, which
the diffusion model directly condition on. To achieve that, we fix the initial tri-plane noise and use DDIM [88] to obtain diffusion samples.


