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ABSTRACT

Recent Self-Supervised Learning (SSL) methods are able to learn feature repre-
sentations that are invariant to different data augmentations, which can then be
transferred to downstream tasks of interest. However, different downstream tasks
require different invariances for their best performance, so the optimal choice of
augmentations for SSL depends on the target task. In this paper, we aim to learn
self-supervised features that generalize well across a variety of downstream tasks
(e.g., object classification, detection and instance segmentation) without knowing
any task information beforehand. We do so by Masked Augmentation Subspace
Training (or MAST) to encode in the single feature space the priors from different
data augmentations in a factorized way. Specifically, we disentangle the feature
space into separate subspaces, each induced by a learnable mask that selects rele-
vant feature dimensions to model invariance to a specific augmentation. We show
the success of MAST in jointly capturing generalizable priors from different aug-
mentations, using both unique and shared features across the subspaces. We fur-
ther show that MAST benefits from uncertainty modeling to reweight ambiguous
samples from strong augmentations that may cause similarity mismatch in each
subspace. Experiments demonstrate that MAST consistently improves generaliza-
tion on various downstream tasks, while being task-agnostic and efficient during
SSL. We also provide interesting insights about how different augmentations are
related and how uncertainty reflects learning difficulty.

1 INTRODUCTION

Self-Supervised Learning (SSL) for image representation has made significant progress over the
past few years. The feature representations are typically learned to be invariant to different data
augmentations (e.g., Random Flip and Color Jitter). For example, the popular contrastive SSL
methods (Chen et al., 2020a; He et al., 2020) learn invariances by discriminating augmented views
of the same image (positive pair) from those of different images (negative pair), while recent non-
contrastive SSL methods (Chen & He, 2021; Grill et al., 2020; Bardes et al., 2022) simply maximize
the similarity between positive pairs. Such learned features are shown to generalize across many
downstream tasks, including classification, object detection, instance segmentation, etc.

Despite achieving strong transfer performance, we lack a good theoretical understanding about why
both contrastive and non-contrastive SSL methods generalize so well. Balestriero & LeCun (2022)
recently proposed a unified framework that demonstrates the key for generalization lies in the align-
ment between the pairwise relation in SSL (characterized by augmented inputs) and downstream
task. This is also in line with other theories (Arora et al., 2019; HaoChen et al., 2021) that quantify
how data augmentations implicitly encode the class distributions in downstream tasks. Motivated
by these theoretical analyses, we aim at a working SSL method that can directly capture meaningful
priors from data augmentations in order to encourage generalization for a range of tasks.

Invariance, as achieved through augmentation, is a useful mechanism to facilitate generalization. For
example, one can imagine that invariance to Random Flip will boost generalization on many vision
tasks. However, as shown in Fig. 1, the optimal set of augmentations (thus invariances) highly de-
pends on the downstream task, which has been similarly observed in (Tian et al., 2020). Sometimes,
invariances (e.g., to Color Jitter) that prove helpful for one downstream task (e.g., object detection)

1

ar
X

iv
:2

30
3.

03
67

9v
1 

 [
cs

.L
G

] 
 7

 M
ar

 2
02

3



Published as a conference paper at ICLR 2023

Re
la

tiv
e 

pe
rfo

rm
an

ce
 c

ha
ng

e

-40

Augmentations removed

-20

-10

0

10

-30

ImageNet classify (Acc)

-50

CUB-200 birds classify (Acc)

-2.0

Augmentations removed

-1.0

-0.5

0

0.5

-1.5

-2.5

-12

Augmentations removed

-6

-3

0

3

-9

VOC detection (AP50)

-15

Crop helps for all tasks, other augmentations encode their specific invariances that can be more relevant for some 
tasks than others. Color even hurts

COCO segmentation (AP)

-1.2

Augmentations removed

-0.6

-0.3

0

0.3

-0.9

-1.5

Remove Color Jitter Remove Gaussian Blur Remove Random Flip Remove Grayscale Remove RandomResizedCrop

Figure 1: The change of downstream performance per task due to the selective removal of each
augmentation during SSL, relative to one baseline SSL method MoCo (He et al., 2020) trained
with 5 standard data augmentations, including Color Jitter, Gaussian Blur, Random Flip, Random
Grayscale, RandomResizedCrop. Performance drop after removing one augmentation indicates that
it helps the corresponding task, while performance gain indicates harm. We observe that Random-
ResizedCrop strongly benefits all tasks. Other augmentations encode their specific invariances that
can be more helpful for some tasks than others. Some augmentations (e.g., Color Jitter) even hurt
one task (CUB-200 bird classification) despite being quite helpful for other tasks.

may even hurt generalization on another (e.g., birds classification which requires accurate color
information of similarly shaped bird species). Hence it is impossible to maximize generalization
by finding good augmentations for SSL in a task-dependent way, not only because the invariances
learned across augmentations may contradict each other, but also because we often do not know the
target task a priori during SSL. Furthermore, manually finding suitable augmentations for general-
izing to a new task is quickly cumbersome.

In this paper, we propose a new SSL method to learn generalizable features without presuming
any downstream task information. Our method called Masked Augmentation Subspace Training
(MAST) achieves this goal by learning a single but disentangled feature space to encode a set of
potentially contradicting augmentation invariances. For each augmentation, we learn invariance
to it in a specialized feature subspace, which is induced from the full space with a learned masking
operation. This allows us to learn unique features for each augmentation subspace as well as features
shared between them. There are two main benefits of such subspace training: 1) we explicitly avoid
feature suppression (Li et al., 2020) by jointly training separate feature subspaces, such that the
learning of one subspace will not compromise that of another; 2) we obtain a disentangled, full
feature space that is pre-trained in a task-agnostic way, but does not discard the diverse information
(i.e., invariances) required by all possible downstream tasks. We further model uncertainties in the
feature representations to reduce harm of ambiguous samples from strong augmentations.

In order to examine how representation effectiveness scales with augmentation diversity, we run
experiments with different numbers of augmentations, starting from 5 standard augmentations used
typically in SSL (Chen et al., 2020a), and extending to an additional 10 augmentations (totaling
15). Note Tian et al. (2020) and Wang & Qi (2021) also learn from stronger augmentations, but
not in our factorized and uncertainty-aware fashion. When it comes to transfer learning on down-
stream tasks, we simply drop our subspace masks and finetune the full feature representations for
high efficiency. This is in contrast to LooC (Xiao et al., 2021) which needs to combine multiple
feature “heads”, with one head being invariant to all augmentations and other heads being sensitive
to a particular augmentation but invariant to others. Both the “leave-one-out” training and feature
ensembling strategies in LooC lead to redundancy of parameters and high cost (thus only allowing
a few augmentation-specific heads).

Experiments show that MAST, while being efficient and task-agnostic, achieves state-of-the-art
transfer performance on diverse downstream vision tasks. Investigations of the subspace masks
and uncertainties also provide interesting insights in how different augmentations are related, and in
how uncertainty reflects learning difficulty to avoid similarity mismatch during invariance learning.

To summarize, here are our main contributions:
• We introduce MAST to make SSL representations disentangled and uncertainty-aware to

effectively encode different augmentation invariances for good generalization.
• We show MAST is efficient, is resistant to feature suppression, and achieves state-of-the-art

downstream performance on diverse vision tasks without presuming any task information
during pre-training.
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• We provide interesting insights about how different augmentations are related in SSL and
how uncertainty reflects learning difficulty and impacts learning adaptively.

2 RELATED WORK

Self-Supervised Learning. Contrastive learning is one popular form of SSL, which contrasts differ-
ent views of an input (positive pairs) against other inputs (negative pairs). Recent contrastive meth-
ods mainly differ in how they sample negative pairs, e.g., from a large batch as in SimCLR (Chen
et al., 2020a) or from a memory bank as in MoCo (v2) (He et al., 2020; Chen et al., 2020b). One
downside of contrastive methods is that they require a multitude of negative pairs to work well,
leading to memory inefficiency. Recent non-contrastive SSL methods such as BYOL (Grill et al.,
2020), SimSiam (Chen & He, 2021) and OBoW (Gidaris et al., 2021) improve by not using nega-
tive pairs. They only maximize the consistency between positive pairs in a teacher-student frame-
work, and some variants like SwAV (Caron et al., 2020), Barlow Twins (Zbontar et al., 2021) and
VICReg (Bardes et al., 2022) achieve state-of-the-art performance on several downstream tasks.
Note Tian et al. (2020) and Wang & Qi (2021) point out the important role of using strong data aug-
mentations on generalization, but none of the aforementioned works explore the connection between
learning factorized augmentation invariances and generalization.

Theoretical analysis on generalization. There has been significant interest in theoretically explain-
ing the success of contrastive SSL from various perspectives, e.g., mutual information maximiza-
tion (Bachman et al., 2019) or dimension collapse (Jing et al., 2022). Most relevant to our work
are theoretical studies (Arora et al., 2019; HaoChen et al., 2021) that show the augmentation dis-
tributions of same-class inputs have sufficient overlap when the costrastive loss is small, in which
case data augmentations can implicitly encode the class structure for downstream tasks. Balestriero
& LeCun (2022) further prove that generalization depends on the alignment between pairwise data
relations with augmentations and downstream task. Inspired by these theories based on data and aug-
mentation distributions, we propose to improve the generalization of SSL by a factorized learning of
augmentation properties as well as uncertainty modeling. The factorization allows each downstream
task to choose which underlying symmetries in the data require specific invariances.

Empirical works on generalization. Designing better augmentation strategies is one effective way
to create task-relevant inductive biases for generalization. Tian et al. (2020) propose to learn the
augmented views, but require labeled data from the target task, which is not scalable. Another line
of works study the feature suppression phenomenon in SSL that can negatively impact downstream
performance via “shortcuts” (i.e., by suppressing useful predictive features). To avoid shortcut so-
lutions, Robinson et al. (2021) propose implicit feature modification to encourage instance discrim-
ination using a wider variety of features; while Li et al. (2020) force contrastive learning to learn
features that can also predict the input, without discarding important information. Our method au-
tomatically avoids shortcuts by jointly training multiple masked feature subspaces within the full
space. Similar to our subspace training idea is LooC (Xiao et al., 2021) where both augmentation-
variant and -invariant feature spaces are learned and then concatenated to support different tasks. By
contrast, our MAST is parameter-efficient by learning a single feature space, can capture a lot more
augmentation invariances efficiently in masked subspaces, and is aware of feature uncertainties.

Uncertainty modeling. Uncertainty-aware methods (Gal, 2016) have been extensively studied in
supervised learning to handle ambiguous or noisy inputs. For SSL, only a few studies estimate un-
certainties helpful in specific applications, such as self-supervised depth estimation (Poggi et al.,
2020) and multiview stereo (Xu et al., 2021). General methods for uncertainty-aware SSL are lack-
ing in the literature. One exception is variational inference SimSiam (Nakamura et al., 2022), a
probabilistic extension of the non-contrastive SSL method SimSiam (Chen & He, 2021) that models
uncertainty using spherical posterior distributions. Here we propose a simple alternative for uncer-
tainty modeling in our SSL framework, where a Gaussian feature assumption suffices in each of our
augmentation-specific subspaces.

3 MAST: MASKED AUGMENTATION SUBSPACE TRAINING

We propose a new SSL method to learn generalizable priors without presuming any downstream task
information. To achieve this goal, we identify three desiderata for our method: 1) effective in captur-
ing distinct priors (about invariances) from different augmentations. This will ease transfer learning
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Figure 2: MAST: Masked Augmentation Subspace Training for SSL. Given an input image x,
two augmented views v and v′ are produced by composing K image augmentations sampled from
a distribution T . Then different views are encoded into their feature representations, followed by a
projection into Gaussian embeddings N (µ,Σ) encoding uncertainty. For a disentangled learning of
K types of augmentation invariances, we jointly learn a mask mk for each augmentation to attend
to the corresponding subspace where a similarity loss is computed. After pretraining, everything
but the encoder f is discarded. The representations of the encoder are used for downstream tasks,
without requiring overhead from ensembling subspace features or masks during transfer learning.

on different downstream tasks, where each task automatically selects useful priors in the pre-trained
representations via finetuning; 2) free of feature suppression (Li et al., 2020), i.e., learning priors in
some features comes at no cost of suppressing others. Particularly, we should accommodate learn-
ing different invariances that can be either universally helpful for all downstream tasks or that would
otherwise contradict each other (as shown in Fig. 1); 3) efficient enough to learn a large number of
priors without too much cost (time or memory), and incurs no overhead for transfer learning.

3.1 DESCRIPTION OF MAST

We achieve the desiderata above by MAST, see the schematic in Fig. 2. Assume we have a sam-
pled batch of n images, and an augmentation set T consisting of K atomic augmentation operators
o1, . . . , oK such as RandomResizedCrop and Color Jitter. For each image x, we produce two aug-
mented views v = t(x) and v′ = t′(x) by sampling random compositions of image augmentations
t ∼ T(o1,...,oK) and t′ ∼ T(o1,...,oK) with their specific augmentation parameters. We encode the
views v and v′ by an encoder f into their representations y = f(v) and y′ = f(v′), which are then
mapped by a projector g onto embeddings z = g(y) and z′ = g(y′).

Typically, a similarity loss is computed between z and z′ to learn augmentation invariances. How-
ever, this makes it hard to learn distinct invariances because learning is unfactorized in the presence
of the compositions of K augmentations applied on x. Even worse, unfactorized learning from
contradicting augmentation compositions could cause feature suppression that hurts generalization.

Disentangled learning is the main idea behind our MAST method to learn different invariances
without feature suppression. Let Z = [z1, . . . , zn] and Z ′ = [z′1, . . . , z

′
n] be the two batches of

d-dimensional embeddings of the augmented views V = [v1, . . . , vn] and V ′ = [v′1, . . . , v
′
n]. We

build MAST on top of the VICReg framework (Bardes et al., 2022) which minimizes the distance
between the embeddings of different views, with two regularization terms:

`(Z,Z ′) = λD(Z,Z ′) + α`var(Z,Z ′) + β`cov(Z,Z ′), (1)
where D(Z,Z ′) enforces augmentation invariance in form of the mean-squared euclidean distance∑

i ||zi − z′i||22/n, without any feature normalization. The variance term `var(Z,Z ′) keeps the
information content of each embedding (in Z or Z ′) above a certain level. While the covariance term
`cov(Z,Z ′) is introduced to prevent informational collapse by decorrelating different dimensions in
each embedding. λ, α and β are the loss coefficients.

The above variance and covariance terms result in maximum information embeddings that are well
suited for disentangled learning. As such, we propose to disentangle the embedding space into dis-
tinct subspaces, each of which captures invariance to a specific augmentation. Instead of using bulky
MLP heads to generate subspaces, we introduce K masks M ∈ Rd×K

≥0 over the embedding space
at a much lower cost. Specifically, each mask mk = M:,k is associated with a fixed augmentation
operator ok from set T , and mk has the same dimensionality d as the embedding vector zi.

To attend to the kth subspace, we only need to apply an element-wise masking operation� using the
corresponding maskmk to select relevant embedding dimensions (i.e., zi�mk). Therefore, to learn
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Figure 3: (a) Visualizing the masks learned for 5 augmentation subspaces on ImageNet. The masks
disentangle the full embedding space but allow shared dimensions between different subspaces. (b)
2D visualizations of two example subspaces on CUB-200 dataset (Wah et al., 2011). The subspaces
are obtained by masking the ImageNet-pretrained feature embeddings using the learned masks. Dif-
ferent colors correspond to different classes. We observe meaningful subspaces with desired invari-
ances: in the subspace learned to be invariant to the RandomResizedCrop augmentation, classes are
reasonably separated probably because random image patches can exploit color cues that are im-
portant for fine-grained birds classification; while the subspace invariant to the Random Grayscale
augmentation is less discriminative (only for this particular task), because such invariance discards
color information so one has to use other cues, e.g., birds’ pose and shape for classification.

disentangled augmentation invariances from the paired views V and V ′, we replace the unfactorized
distance function in Eq. (1) with the sum of K masked embedding distances:

Dme(Z,Z
′;M) =

1

n

n∑
i=1

K∑
k=1

||zi �mk − z′i �mk||22, (2)

`sp(M) = ||M ||1, (3)
where we maskK times for the original embedding zi of an augmented view withK augmentations.
The term `sp(M) helps to encourage sparse masks. Note the embeddings and masks are jointly
trained (see Section 3.2 for more training details). Fig. 3 shows example masks that induce 5 distinct
but overlapping subspaces. This not only avoids potential feature suppression in separate subspaces,
but also encourages collaborative learning in the shared embedding dimensions. Fig. 6 (Appendix C)
reaffirms that different augmentation subspaces benefit different tasks.

Eventually, we obtain a single but disentangled embedding space that stores different invariance
priors for generalization. Note the disentanglement at the embedding level will have a disentangle-
ment effect at the representation level. Thus, we only use the feature representations for testing on
downstream tasks, dropping all the pre-trained embeddings and subspace masks. As a result, we
introduce no computation overhead from subspace ensembling during transfer learning.

Uncertainty modeling plays an important role when the input is ambiguous (e.g., due to strong
augmentations), but still remains a largely unexplored problem in SSL. We address this issue with
a simple method that explicitly models uncertainty using Gaussian embeddings. Concretely, instead
of having a projector g : y → z to map representations y to deterministic embeddings z ∈ Rd, we
extend to the projector g : y → (µ,Σ) that produces a multivariate Gaussian distribution N (µ,Σ)
with mean µ ∈ Rd and covariance Σ ∈ Rd×d. We consider Σ to be diagonal for efficiency, modeling
the uncertainty independently for every dimension of the mean embedding µ.

With this independence assumption, we can use masking to easily induce embedding subspaces
that are still Gaussian, i.e., N (µ̃k, Σ̃k) where µ̃k = µ � mk and Σ̃k = Σ � diag(mk). We find
the Gaussian embeddings suffice to model the uncertainties of augmented views in each subspace
where only one type of augmentation is involved. Then we further improve Eq. (2) to learn factorized
augmentation invariances in an uncertainty-aware manner:

Dmg(V, V ′;M) =
1

n

n∑
i=1

K∑
k=1

2||µ̃i
k − µ̃

′i
k ||22

tr(Σ̃i
k) + tr(Σ̃′i

k )
, (4)

where µ̃i
k and µ̃

′i
k are the mean embeddings of views vi and v′i in the kth subspace, and their dis-

tance is re-weighted by their uncertainty measures (trace tr(·) of covariance matrix) to determine
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the closeness of the two Gaussians. Intuitively, when the embeddings have high uncertainties, the
similarity loss should be downweighted to prevent similarity mismatch between ambiguous views.

To stablize the learning of uncertainties, we introduce an extra regularization term to encourage
consistency between the predicted Gaussian embeddingsNi(µi,Σi) andN ′i (µ′i,Σ′i) for views vi and
v′i. This term is based on symmetric KL divergence, with a closed-form expression for Gaussians:

`kl(V, V
′) =

1

n

n∑
i=1

DKL(Ni||N ′i ) +DKL(N ′i ||Ni), (5)

DKL(Ni||N ′i ) =
1

2

[
tr
(
Σ′−1i Σi

)
+ (µ′i − µi)

T Σ′−1i (µ′i − µi) + log
|Σ′i|
|Σi|

]
. (6)

Combining Eqs. (3-6) and substituting them into Eq. (1), we arrive at our final loss function:

`(V, V ′;M) = λDmg(V, V ′;M)+λ1`sp(M)+λ2`kl(V, V
′)+α`var(V, V ′)+β`cov(V, V ′). (7)

3.2 IMPLEMENTATION DETAILS

Architecture and hyper-parameters. Our pretraining is mostly performed on the unlabeled Ima-
geNet dataset (Deng et al., 2009) with 1000 classes unless otherwise stated. For fair comparison,
the encoder f is the widely-adopted ResNet-50 backbone (He et al., 2016) which outputs 2048-
dimensional feature representations. The projector g has two fully-connected layers of size 8192,
followed by separate fully-connected heads that respectively output the mean µ and diagonal covari-
ance Σ (both of d = 4096 dimensions) of Gaussian embeddings. Loss coefficients in Eq. (7) are set
as α = 25, β = 1 following VICReg (Bardes et al., 2022), and we set λ = 25d/K, λ1 = 600/(dK)
and λ2 = 25 to generate comparable loss magnitudes. Fig. 8 in Appendix D shows the pretraining
performance on different datasets is not very sensitive to the loss coefficients.

Data augmentations. Our MAST-5 method uses K = 5 augmentations adopted by most recent
SSL methods for fair comparison purposes. The augmentations include Color Jitter (of brightness,
contrast, saturation, hue), Gaussian Blur, Random Flip, Random Grayscale, RandomResizedCrop.
While MAST-15 uses 10 more augmentations (hence K = 15). The added augmentations are
ShearX(Y), TranslateX(Y), Rotate, Invert borrowed from RandAugment Cubuk et al. (2019), as well
as Sharpness, Gaussian Noise, Sobel Filter and Cutout (DeVries & Taylor, 2017) for diversity.

Training details: The training protocol follows that in (Bardes et al., 2022): with batch size 2048,
the LARS optimizer (You et al., 2017) runs for 1000 epochs with weight decay 10−6 and learning
rate 1.6. The learning rate follows a cosine annealing schedule (Loshchilov & Hutter, 2017). For
effective learning of disentangled subspaces, we found it better to schedule the available augmen-
tations in two stages. In the first 500 epochs, we sample one random augmentation ok at a time
to train the corresponding subspace and mask mk, setting K = 1 in Eq. (4). This ensures all the
factorized subspaces are trained well in this stage. For the remaining 500 epochs, random augmen-
tation compositions (. . . , ok, . . . ) are allowed to learn disentangled invariances from progressively
stronger augmentations (K linearly increases from 1 to its maximum value). For each composing
augmentation, we use its default augmentation probability but random magnitude for robust training.

4 EXPERIMENTS

Main results. We start with evaluating our MAST method for SSL on ImageNet. Table 1 shows the
results from both linear and semi-supervised evaluations, using the same optimization procedures of
our baseline VICReg (Bardes et al., 2022). The numbers reported for our MAST-5 and MAST-15
variants are the mean scores from 3 runs with different random initialization.

It can be seen from Table 1 that when 5 standard augmentations are used for SSL, MAST-5 achieves
strong performance on-par with or better than that of state-of-the-art contrastive and non-contrastive
methods. MAST-5 also consistently outperforms our baseline method VICReg, indicating the power
of disentangled and uncertainty-aware learning of different augmentation invariances. Note predic-
tive contrastive learning (PCL) is related to us in avoiding feature suppression, but by strengthening
contrastive learning with a predictive inpainting task. MAST-5, on the other hand, achieves much
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Table 1: Evaluation on ImageNet using representations trained with a ResNet-50 backbone in terms
of Top-1 and Top-5 accuracies (%). We evaluate linear classification using the frozen representations
from ImageNet, and semi-supervised classification using the fine-tuned representations from 1% and
10% ImageNet samples. Most methods in the middle cell (including our MAST-5) use the same 5
augmentations in (Chen et al., 2020a), while the bottom cell compares methods using much more
augmentations, e.g., from RandAugment (Cubuk et al., 2019).

Method
Linear Semi-supervised

Top-1 Top-5 Top-1 Top-5
1% 10% 1% 10%

Supervised 76.5 - 25.4 56.4 48.4 80.4

MoCo (He et al., 2020) 60.6 - - - - -
SimCLR (Chen et al., 2020a) 69.3 89.0 48.3 65.6 75.5 87.8
PCL (Li et al., 2020) 71.0 - - - - -
MoCo v2 (Chen et al., 2020b) 71.1 - - - - -
SimSiam (Chen & He, 2021) 71.3 - - - - -
SwAV (Caron et al., 2020) 71.8 - - - - -
OBoW (Gidaris et al., 2021) 73.8 - - - 82.9 90.7
BYOL (Grill et al., 2020) 74.3 91.6 53.2 68.8 78.4 89.0
SwAV (w/ multi-crop) (Caron et al., 2020) 75.3 - 53.9 70.2 78.5 89.9
Barlow Twins (Zbontar et al., 2021) 73.2 91.0 55.0 69.7 79.2 89.3
VICReg (Bardes et al., 2022) 73.2 91.1 54.8 69.5 79.4 89.5
MAST-5 (ours) 74.9 91.8 55.2 70.2 80.1 90.2

InfoMin Aug (Tian et al., 2020) 73.0 91.1 - - - -
CLSA (Wang & Qi, 2021) 72.2 - - - - -
MAST-15 (ours) 75.8 92.1 55.8 71.4 81.0 90.9

Table 2: Transfer performance on downstream tasks using the pretrained representations on Im-
ageNet. We evaluate linear classification using frozen representations on datasets Places205 (Top-1
accuracy %), VOC07 (mAP %) and iNat18 (Top-1 accuracy %). We also evaluate fine-tuning per-
formance for object detection on VOC07+12 (AP50) and for instance segmentation on COCO (AP).

Method Linear Classification Detection Segmentation

Places205 VOC07 iNat18 VOC07+12 COCO
det

COCO
seg

Supervised 53.2 87.5 46.7 81.3 39.0 35.4

MoCo (He et al., 2020) 46.9 79.8 31.5 - - -
SimCLR (Chen et al., 2020a) 52.5 85.5 37.2 - - -
MoCo v2 (Chen et al., 2020b) 51.8 86.4 38.6 82.5 39.8 36.1
SimSiam (Chen & He, 2021) - - - 82.4 - -
BYOL (Grill et al., 2020) 54.0 86.6 47.6 - 40.4 37.0
SwAV (w/ multi-crop) (Caron et al., 2020) 56.7 88.9 48.6 82.6 41.6 37.8
OBoW (Gidaris et al., 2021) 56.8 89.3 - 82.9 - -
Barlow Twins (Zbontar et al., 2021) 54.1 86.2 46.5 82.6 40.0 36.7
VICReg (Bardes et al., 2022) 54.3 86.6 47.0 82.4 39.4 36.4
MAST-5 (ours) 58.9 91.1 49.5 83.1 41.9 37.2

InfoMin Aug (Tian et al., 2020) - - - 82.7 40.6 36.7
CLSA (Wang & Qi, 2021) - 93.6 - 83.2 42.3 -
MAST-15 (ours) 59.6 92.8 50.2 84.0 43.1 38.3

stronger performance by explicitly training different feature subspaces that can encode contradicting
invariances without undesired trade-offs. Fig. 3 supports this hypothesis with one visual example of
bird classification where one subspace is sensitive to color cues, and the other captures invariance to
color, exploiting pose and shape instead. Our method can be further extended to MAST-15 learning
with 15 types of augmentations, which outperforms InfoMin Aug and CLSA that similarly learn
from stronger augmentation compositions but in a suboptimal unfactorized way.

Next, following the setup in (Bardes et al., 2022), we evaluate the transfer performance of the
ImageNet-pretrained representations on various downstream tasks: linear classification on the scene
dataset Places205 (Zhou et al., 2014), multi-label image classification dataset VOC07 (Everingham
et al., 2010) and fine-grained image classification dataset iNaturalist2018 (Van Horn et al., 2018).

7



Published as a conference paper at ICLR 2023

Table 3: Evaluation of linear classification on
ImageNet-100 using representations pre-trained
with a ResNet-50 backbone on the same dataset
in terms of Top-1 and Top-5 accuracies (%). En-
semble: feature ensembling. Repr: effective rep-
resentation dimensionality used for classification.

Method Top-1 Top-5 Repr.

MoCo v2 (Chen et al., 2020b) 81.0 95.2 2048
IFM-MoCo v2 (Robinson et al., 2021) 81.4 - 2048
LooC (Xiao et al., 2021) 79.2 94.7 2048
LooC++ (Xiao et al., 2021) (ensemble) 81.2 95.2 2048×3

MAST-5 (default) 81.9 95.4 2048
MAST-5 (ensemble) 82.1 95.4 2048×5
MAST-15 82.5 95.5 2048

Table 4: Downstream classification accuracies
(%) of ImageNet-100 pretrained representations
on CUB-200 and Flowers-102. ∗ indicates en-
hanced baselines by AugSelf authors. We com-
pare accuracy gains in subscripts over each baseline.

Method CUB-200 Flowers-102

Top-1 Top-5 5-shot 10-shot

MoCo v2 (Chen et al., 2020b) 36.7 64.7 67.9 77.3
LooC (Xiao et al., 2021) 39.6 2.9 69.2 4.5 70.9 3.0 80.8 3.5

MoCo v2∗ (Chen et al., 2020b) 32.2 - 78.5 81.2
+ AugSelf (Lee et al., 2021) 37.0 4.8 - 81.7 3.2 84.5 3.3

SimSiam∗ (Chen & He, 2021) 38.4 - 83.6 85.9
+ AugSelf (Lee et al., 2021) 45.3 6.9 - 86.4 2.8 88.3 2.4

VICReg (Bardes et al., 2022) 37.5 65.2 68.3 77.5
MAST-5 40.3 2.8 69.8 4.6 70.1 1.8 81.2 3.7
MAST-15 41.1 3.6 70.0 4.8 72.4 4.1 81.9 4.4

We also transfer the representations to object detection on VOC07+12 using Faster R-CNN (Ren
et al., 2015) with a R50-C4 backbone, and instance segmentation on COCO (Lin et al., 2014) using
Mask-R-CNN (He et al., 2017) with a R50-FPN backbone. Table 2 shows larger performance gap
between MAST-5/15 and prior works for almost all tasks, demonstrating the superior generalization
capabilities of our learned invariance priors despite being task-agnostic.

Comparing with more related methods: Implicit feature modification (IFM) (Robinson et al.,
2021) and Leave-one-out Contrastive Learning (LooC) (Xiao et al., 2021). All comparing methods
use the same 100-class ImageNet dataset and 500 epochs for pretraining. IFM is a method that
avoids shortcut solutions by altering sample features during contrastive learning. Table 3 shows
IFM improves the MoCo v2 baseline by a small margin, but not as much as the gain offered by our
disentangled method (MAST-5) that explicitly reduces feature suppression.

LooC combines augmentation-invariant and -variant feature subspaces to reduce the harm of partic-
ular invariances for some downstream tasks. Table 3 shows that LooC, when regularized with such
subspace training, actually hurts performance on the pretraining dataset ImageNet-100 (in compar-
ison to baseline MoCo v2). This suggests that the “disentanglement” learned by LooC may still
suppress certain useful features. By contrast, our disentangled learning with MAST-5 seems more
effective, giving notable gains over MoCo v2. Note the advanced LooC++ variant can recover the
loss of LooC by ensembling feature subspaces. However, LooC++ cannot generate solid gains over
the MoCo v2 baseline, and at the same time suffers from a much larger cost from feature ensem-
bling. When we apply the idea of ensembling (masked) feature subspaces to MAST, we observe
slightly improved performance at the cost of increased feature dimensionality. Hence our default
MAST-5 approach just uses the original unmasked representations without any ensembling, which
is efficient and performant already. MAST-15 further improves performance by learning from more
augmentations. Table 4 validates that MAST-5/15 remain competitive with LooC and a recent strong
method AugSelf (Lee et al., 2021) on two downstream tasks: fine-grained classification on CUB-200
dataset (Wah et al., 2011), and few-shot classification on Flowers-102 dataset (Nilsback & Zisser-
man, 2008). Table 9 in Appendix D provides more fine-grained classification results.

Ablation study is conducted in Table 5 to evaluate different components of MAST. We use the setup
where representations are pretrained on the ImageNet-1k dataset and tested on 4 representative tasks.

Recall that MAST-15 gains a lot over MAST-5 by using more augmentations. We start with asking:
“is it more about disentangled learning or just richer augmentations?” Row 2 answers this question
by applying the same K = 15 augmentations to our baseline VICReg. We can see that this variant
falls far behind MAST-15 (row 1), and even behind the baseline (row 4) on classification tasks. This
indicates that naively composing more augmentations could hurt downstream performance without
disentangled learning to avoid feature suppression. Then for MAST-15 with such capability, will
even more augmentations help? We experimented with adding 4 common augmentations Solarize,
Equalize, Posterize, Motion Blur in row 3 (so K = 19). No large improvements are observed
probably because the added augmentations are redundant (more on augmentation relations later).
We leave for future work the investigation of advanced or learned augmentation techniques.

Next, we ablate other components of our method based on MAST-5 for efficiency. Recall that
MAST-5 benefits from a two-staged scheduling of augmentations (from one at a time to linearly
increasing number of augmentations). We find such augmentation scheduling can improve VICReg
as well (row 6), but not enough to compete with MAST-5 (row 5). Lastly, by comparing row 5 to
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Table 5: Ablation study of different MAST components (ImageNet pretraining→ 4 testing tasks).

Comment Row Method Linear classify Linear classify Detection Segmentation

ImageNet (Top-1) Places205 (Top-1) VOC07+12 (AP50) COCO (AP)

Disentangled learning 1 MAST-15 75.8 59.6 84.0 38.3
or richer aug.? 2 VICReg (K = 15) 73.1 53.5 82.6 36.9

Will more aug. help? 3 MAST-19 75.8 59.4 84.0 38.4

Baseline 4 VICReg (K = 5) 73.2 54.3 82.4 36.4
5 MAST-5 74.9 58.9 83.1 37.2

Staged aug. schedule 6 VICReg (K = 5) 73.4 54.6 82.4 36.5

Handcrafted masks 7 MAST-5 74.3 58.1 82.5 36.9

No uncertainty 8 MAST-5 74.1 57.5 82.7 36.8
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Figure 4: (a) Correlation between augmentations measured by their masks’ cosine similarity. (b)
ImageNet linear classification Top-1 accuracy vs. increasing number of augmentations during SSL.
Augmentations with low correlation with others provide diverse priors and large performance gains.

rows 7-8, we can easily find the benefits of our learned subspace masks (vs. handcrafted disjoint
masks: all 1’s for each subspace of d/K dimensions, and 0 elsewhere) and uncertainty modeling.

Visualizations. We exploit the learned subspace masks to quantify augmentation correlations unsu-
pervisedly by computing the cosine similarity between masks. Fig. 4(a) shows the example pairwise
correlation between 19 augmentations on ImageNet. We can observe weakly correlated augmenta-
tions such as (Gaussian Blur, Rotate) and (Gaussian Blur, ShearY). They define diverse augmen-
tations that could introduce complementary invariance priors for good generalization (if potential
contradictions can be reduced, e.g., by our factorized learning). There are also strongly correlated
augmentations like (ShearX, ShearY) that offer redundant invariance information. The 4 optional
augmentations Solarize, Equalize, Posterize, Motion Blur are highly correlated with others too (e.g.,
with Color Jitter and Gaussian Blur), therefore we exclude them from MAST-15. Fig. 4(b) demon-
strates the positive role of augmentation diversity on generalization. We gradually add augmenta-
tions to MAST-5 for SSL, such that distinct augmentations with low mean correlation with others
are added first. Those augmentations are observed to improve the downstream performance quickly,
and then performance plateaus with redundant, correlated augmentations. This suggests that our
correlation measure can indeed be a rough guidance on composing generalizable augmentations.

Appendix B further shows how MSAT correctly models uncertainties for strongly augmented sam-
ples in order to improve SSL performance (comparison with a related uncertainty model (Nakamura
et al., 2022) is also provided), and how uncertainty reflects learning difficulty.

5 CONCLUSION

This paper studies the important role of data augmentation in creating useful invariance priors dur-
ing SSL, which is the key inductive bias for good generalization on downstream tasks. Instead of
enumerating all the possible augmentation compositions and selecting the best set of invariances
for a target task, we propose a unified framework to embed all the distinct priors of invariance into
feature representations that can be readily used for different tasks. Our MAST method, featuring
disentangled representation learning and uncertainty modeling, proves competitive when evaluated
on a variety of downstream vision tasks.
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Figure 5: (a) Example uncertainty estimations for augmented views of images on Flowers-17
dataset. Views with strong augmentations have high uncertainties in their feature representations.
(b) Mean uncertainty estimations for two flower classes vs. mean linear classification accuracies
(Top-1 %) of the two classes. The lower-performing class ‘Pansy’ has higher uncertainty and larger
variance in uncertainty estimates, due to large variations in the flower color, size and shape. This
indicates our uncertainty measure can reflect the learning difficulty of the classification task.

A ADDITIONAL IMPLEMENTATION DETAILS

Uncertainty modeling. We have separate heads in the projector g to predict the mean and diagonal
covariance of Gaussian embeddings. The mean head is composed of a Generalized-Mean (GeM)
pooling layer (Radenović et al., 2019) followed by a fully connected layer that outputs µ ∈ Rd with
d = 4096. The covariance head is composed of a GeM layer and a fully connected layer with ReLU
activation function (to ensure positivity) to output the d-dimensional diagonal of a covariance matrix
Σ. The separate GeM layers in the mean and covariance heads are beneficial, since they help to learn
different p-norms for the mean and covariance.

Mask learning. Our learned subspace masks act as element-wise gating functions to select relevant
embedding dimensions. We ensure the positivity of masks M ∈ Rd×K

≥0 by learning them as M =

max(0, U) using a ReLU activation function where U ∈ Rd×K . During training, we found it
useful to initialize the masks as random rather than fixed ones (e.g., when initial mask values are
all the same). More specifically, we initialize each mask (i.e., each column of U ) such that the
corresponding subspace of d/K dimensions follows a Gaussian distribution and Gaussian noise
is added for all dimensions. The Gaussian prior for each subspace mask eases mask training in
the beginning and expedites the search of disentangled solutions. While the added Gaussian noise
is large enough (with mean 0.2 and variance 0.01) to help find meaningful mask patterns in all
dimensions.

B UNCERTAINTY VISUALIZATION AND COMPARISON

Uncertainty visualization. In MAST, uncertainty is estimated as a vector, i.e., diagonal covariance
of Gaussian embeddings to encode uncertainty in every dimension of the embeddings. For the
ease of visualization, we need a scalar uncertainty measure to quantify how uncertain we are about
the entire image input and its representations. Here we compute the scalar uncertainty based on
a volumetric measure (trace of covariance matrix), which is then linearly rescaled to the range of
[0, 1]. The higher the value is, the larger uncertainty the representations have. Fig. 5(a) shows
some example uncertainty estimations on Flowers-17 dataset (Nilsback & Zisserman, 2006). We
observe high uncertainties estimated for strongly augmented images, while low uncertainties for
the weakly augmented. This shows our uncertainty measure can reasonably capture the strength of
data augmentations. This is a desirable behavior since when the augmentations are strong enough to
produce ambiguous views or even change the identity of input images, we can use the estimated high
uncertainty to downweight the distance between ambiguous views. As a result, similarity mismatch
is avoided during invariance learning.
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Table 6: Evaluation of linear classification on Flowers-17 and Cars using representations pre-
trained on the respective datasets in terms of Top-1 and Top-5 accuracies (%).

Method Flowers-17 Cars

Top-1 Top-5 Top-1 Top-5

SimSiam (Chen & He, 2021) 24.6 51.5 12.7 33.2
VI-SimSiam (Nakamura et al., 2022) 19.7 43.9 14.9 37.2
MAST-5 (uncertainty only) 26.5 55.7 16.4 40.3
MAST-5 (uncertainty + disentangled learning) 28.9 59.1 18.7 44.1

Fig. 5(b) further connects uncertainty with the classification performance (linear probing). It can
be seen that the ‘Pansy’ class exhibits high uncertainty and large variance in uncertainty estimates
due to the large variations of flower appearances. Accordingly, the ‘Pansy’ class has a much lower
classification accuracy than that of ‘Sunflower’ class with low uncertainty. This validates that our
uncertainty measure can indeed reflect the learning difficulty. For the difficult ‘Pansy’ class, the
large uncertainty variance actually offers the chance for us to adapt invariance learning and avoid
similarity mismatch for improvement.

Comparison. We compare with VI-SimSiam (Nakamura et al., 2022) that models uncertainty for
SSL using spherical posterior distributions and variational inference. We follow VI-SimSiam to pre-
train for 100 epochs and use ResNet-18 as the encoder. Pre-training is performed on two datasets re-
spectively: Flowers-17 (Nilsback & Zisserman, 2006) with 17 flower categories (80 images for each
category), and Cars (Krause et al., 2013) with 197 car models (16,185 images). After pre-training,
we train a linear classifier on the frozen representations using the training set of the corresponding
dataset, and evaluate linear classification accuracy in its test set.

Table 6 summarizes the results in Top-1 and Top-5 accuracies. We observe that the uncertainty-
aware VI-SimSiam method is not always helpful when compared to its baseline SimSiam (see the
notable performance drop on Flowers-17). For MAST-5, we experiment with a special variant ‘un-
certainty only’ to not benefit from disentangled subspace learning (i.e., no masks involved). Note
MAST-5 (uncertainty only) is not directly comparable to VI-SimSiam since we have different base-
lines (VICReg vs. SimSiam) and implementation details. The goal here is only to test how our
uncertainty modeling mechanism works in general, when using a simple Gaussian assumption about
feature embeddings. Results show that MAST-5 (uncertainty only) obtains quite competitive perfor-
mance on both datasets, and is further improved by disentangled learning consistently.

C MORE ANALYSIS OF THE AUGMENTATION SUBSPACES

Optimal augmentations (subspaces) are task-dependent. Fig. 1 supports the claim by demon-
strating the difference between the optimal augmentations for different downstream tasks. This
motivates us to develop MAST, by learning disentangled augmentation invariances in masked fea-
ture subspaces that are augmentation-specific. Now with MAST, we find it much easier to quantify
the relationship between augmentations and tasks, using the learned augmentation-specific masks
as a bridge. The end task can freely select from the factorized latent space which feature masks or
augmentations are relevant to the task. This can help us to identify optimal augmentations for one
task in a cheaper way than the leave-one-out strategy in Fig. 1.

We take the classification task as one example. For correctly classified samples, we examine the
class predictions (only for the ground-truth class, using the corresponding weights of the classifier)
by differently masked feature embeddings µ̃i

k of each sample. The higher the class prediction, the
more the corresponding masked augmentation subspace (and its captured invariance) benefits the
given task. Fig. 6 shows the class predictions across 5 augmentation subspaces for ImageNet and
CUB-200 classification, respectively. We observe that, again, different tasks benefit from a different
set of augmentations (e.g., Color Jitter, Random Grayscale, RandomResizedCrop for ImageNet, and
Gaussian Blur, Random Flip, RandomResizedCrop for CUB-200).

Augmentation invariance vs. preserving augmentation-specific information. Since our MAST
method focuses on disentangled learning of different augmentation invariances, we now verify how
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Figure 6: Class predictions by different augmentation-specific subspaces of correctly classified im-
ages on (a) ImageNet and (b) CUB-200 datasets. MAST-5 is used here. Note we attend to different
embedding subspaces via masking based on the learned masks for 5 augmentations. Class predic-
tions are obtained by passing the masked embeddings through the classifier weights associated with
the ground-truth label. The higher the class prediction, the more beneficial the corresponding aug-
mentation subspace (and its captured invariance) is to the classification task. As can be observed,
the optimal set of augmentation invariances are different for the two classification tasks.
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Figure 7: Invariance metric for ImageNet-pretrained feature embeddings. The invariance met-
ric is defined as the cosine similarity between masked embeddings from augmented and original
samples. The higher the metric, the more invariant the subspace is to the tested augmentation. The
invariance metric is computed against 3 augmentations with continuous augmentation parameters:
(a) Color Jitter with the strength factor multiplied over the default configuration (larger value in-
dicates stronger augmentation), (b) Gaussian Blur with the standard deviation of Gaussian filter
(larger value indicates stronger augmentation), (c) RandomResizedCrop with the cropping size ratio
(smaller value indicates stronger augmentation). Top row: augmentation invariances are well cap-
tured by our masked subspaces (better than baseline VICReg features). Bottom row: our subspaces
are disentangled since each is specialized to the corresponding augmentation.

well the invariance property is captured in each of our augmentation subspaces. The invariance
metric is used by computing the cosine similarity between masked embeddings µ̃i

k from augmented
and original samples. Higher metric indicates higher level of augmentation invariance. Fig. 7 shows
this metric on ImageNet when we vary the augmentation parameters of 3 standard augmentations
– Color Jitter, Gaussian Blur, RandomResizedCrop. We exclude other 2 (Random Flip, Random
Grayscale) whose augmentation parameters are discrete.

Two observations from the figure: 1) in top row, our subspaces show great robustness under various
augmentation intensities, especially when compared to the VICReg baseline that learns all augmen-
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Table 7: Linear classification accuracy (%) of rotation using STL10-pretrained representations.

Method SimSiam (Chen & He, 2021) SimSiam+AugSelf (Lee et al., 2021) MAST-5

Accuracy 59.11 64.61 63.47

Table 8: ImageNet performance as a function of pretraining epochs. Performance is measured
as the Top-1 accuracy (%) of linear classification. Our default number of pretraining epochs is 1000.

Epochs 200 400 800 1000

VICReg (Bardes et al., 2022) 70.2 72.3 73.0 73.2
MAST-5 70.9 73.5 74.5 74.9

∆ 0.7 1.2 1.5 1.7

tation invariances in an unfactorized way. 2) the bottom row shows the disentanglement of different
subspaces, since each subspace demonstrates specialization to the corresponding augmentation.

One might ask: will we loose all augmentation-sensitive information when we learn factorized in-
variances from those augmentations? Short answer is no, as evidenced by our strong performance
on various downstream tasks that rely on specific augmentation characteristics (e.g., color-sensitive
bird classification on CUB-200). We hypothesize that different subspaces may offer complemen-
tary information about augmentations for different tasks to choose from. For example, in Fig. 3(b),
the color information suppressed in the subspace invariant to Random Grayscale is available in the
subspace invariant to RandomResizedCrop.

To further support the above hypothesis, we follow the AugSelf work (Lee et al., 2021) to solve
a pretext task of 4-way rotation classification (0◦, 90◦, 180◦, 270◦) using pretrained representa-
tions. The same pretraining protocol is followed: pretraining ResNet-18 for 200 epochs on STL-10
dataset (Coates et al., 2011), and standard augmentations are used (no Rotate). To evaluate rotation
classification accuracy, a linear classifier is trained on top of the frozen representations. Table 7
shows competitive performance of MAST-5 (63.47%) vs. AugSelf (64.61%) which is explicitly
trained to be augmentation-predictive. This validates that we can learn invariances to standard aug-
mentations while maintaining sensitivity to the unseen rotation. In other words, MAST is able to
preserve augmentation-invariant and -specific information implicitly in separate subspaces.

D ADDITIONAL RESULTS

Impact of pretraining epochs. Recall our MAST models are pre-trained in two stages, with in-
creasing number of augmentations (i.e. stronger compositions). As a result, MAST typically ben-
efits significantly from longer training to take full advantage of disentangled learning with strong
augmentation compositions. Table 8 exemplifies the ImageNet performance as a function of pre-
training epochs, from 200 to default 1000. We can observe that 1) our MAST-5 outperforms its
baseline model VICReg across all epoch numbers, 2) more epochs lead to larger gains, but the gain
is still decent (0.7%) at low epoch number 200.

Sensitivity of MAST to loss coefficients. Recall the loss function of MAST in Eq. (7) consists of
2 terms borrowed from the VICReg baseline with their default loss coefficients. We introduce 3
more loss terms, and only set their loss coefficients λ = 25d/K, λ1 = 600/(dK) and λ2 = 25
to have a comparable loss magnitude with that of other terms. In practice, we use the exact same
loss coefficients across different augmentation distributions and different pretraining datasets. Fig. 8
shows the pretraining performance is not very sensitive to λ, λ1, λ2, especially when they are scaled
by a factor between 0.5 and 2. Note for comprehensive evaluations, we monitor the pretraining
performance on the large dataset ImageNet and two relatively small datasets Flowers-17 and Cars,
using their representative evaluation tasks. We could have easily tuned λ, λ1, λ2 per dataset for best
performance, but we choose to use the same loss coefficients for simplicity.
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s=0.5 s=1 (default) s=1.5 s=2 s=3

(a) ImageNet pretraining (b) Flowers-17 pretraining (c) Cars pretraining
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Figure 8: Sensitivity of our MAST-5 to the loss coefficients λ, λ1, λ2. We sweep over the loss
coefficients by varying a multiplier s (default s = 1) applied to each of them. The impact on
pretraining performance is monitored with (a) the large ImageNet dataset (evaluated on 2 tasks), as
well as relatively small datasets (b) Flowers-17 and (c) Cars. Performance is not very sensitive to
the loss coefficients, especially when they are scaled by s ∈ [0.5, 2].

Table 9: Linear classification accuracy (%) on more fine-grained classification datasets, using
ResNet-50 pretrained on ImageNet-100. Both the LooC/LooC++ and AugSelf methods are built on
top of the MoCo v2 baseline.

Method ImageNet-100 iNat-1k Cars SUN397

Top-1 Top-5 Top-1 Top-5 Top-1 Top-1

MoCo v2 (Chen et al., 2020b) 81.0 95.2 36.2 62.0 33.86 46.50
LooC (Xiao et al., 2021) 79.2 94.7 44.0 69.3 - -
LooC++ (Xiao et al., 2021) 81.2 95.2 46.1 71.5 - -
AugSelf (Lee et al., 2021) 82.4 - - - 37.35 48.52

MAST-5 81.9 95.4 46.9 72.1 39.07 49.87
MAST-15 82.5 95.5 48.1 72.8 39.86 50.74

More results of fine-grained classification. As a supplement to Tables 3 and 4, Table 9 pro-
vides more results on additional fine-grained classification datasets iNat-1k (Van Horn et al., 2018),
Cars (Krause et al., 2013) and SUN397 (Xiao et al., 2010) with relatively large number of classes.
The same linear evaluation protocol is adopted, based on the ResNet-50 pretrained on ImageNet-100
for 500 epochs. We compare with both LooC and a new method AugSelf (Lee et al., 2021). AugSelf
combines contrastive learning with an auxiliary loss that predicts augmentation parameters to im-
prove SSL generalization. Note both LooC and AugSelf are built on top of the MoCo v2 baseline. It
can be observed from the table that our MAST-5 is quite competitive on all datasets, and MAST-15
further improves and consistently achieves the best performance.

E DISCUSSION AND COMPARISON WITH MAE-BASED RECONSTRUCTION
METHOD

The recent MAE method (He et al., 2022) has achieved great success without explicit learning of
augmentation invariances. Hence, our MAST and MAE belong to different categories of SSL meth-
ods: MAST falls into the category of discriminative methods that heavily rely on data augmenta-
tion, and MAST further improves by disentangled and uncertainty-aware learning of augmentation
invariances; while MAE is an autoencoding method that reconstructs the masked out patches of in-
put image. MAE is found to perform decently even without augmentations, partially because the
randomness of masking already provides strong regularization on pretraining.

Although the two methods of MAST and MAE will inevitably exhibit different behaviors, we can
still get a general sense of how they compare in performance under the same experimental setup. For
that, we conduct an apples-to-apples comparison using the same network architecture (ResNet-50).
Fast pretraining for 100 epochs is performed on ImageNet. The learned representations are then
evaluated by both linear probing and deep fine-tuning protocols, in order to thoroughly compare the
discriminative and reconstruction methods. For linear probing, we follow MoCo (He et al., 2020)
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Table 10: MAST vs. MAE on ImageNet. Top-1 accuracy (%) of ResNet-50 is measured by linear
probing and deep fine-tuning after 100 epochs of pretraining.

Method Linear Fine-tuning

MAE (He et al., 2022) 37.8 77.1
MAST-5 70.8 78.8

to train a linear classifier on frozen features with an initial learning rate of 30 and batch size of 256.
For deep fine-tuning, we follow the A3 training recipe in (Wightman et al., 2021) with its specific
optimizer and learning rate scheduling.

Table 10 summarizes the comparing results. We can see that, when using ResNet for pretraining,
the MAE-based reconstruction method seem unable to learn as strong representations as our MAST-
based discriminative method, since MAE yields worse results using both of our evaluation protocols.
One future work is to investigate whether our advantage will translate from CNN to Vision Trans-
former models.

Besides empirical evaluations, we note the main architecture-independent advantages of MAST
over MAE are twofold: disentangled augmentation learning and uncertainty learning, which are
missing in the latter family of methods to our knowledge. It would be quite interesting to evaluate
the two components in the MAE framework and go beyond discriminative learning. Intuitively,
if we treat random masking as one type of “augmentation” in MAE, then disentangled learning
from e.g., different augmentation strengths (masking ratios) could lead to local and global features
learned. On the other hand, uncertainty could be important for ambiguous patch reconstruction in
MAE, e.g., when the masking ratio is too high, or when there are barely visual cues around the
masked patch location.
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