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Fig. 1. Novel view synthesis of an actor using Neural Actor (NA) under the control of novel poses, with the corresponding template mesh models shown at
lower right. All the poses are randomly sampled from the testing sequence.

We propose Neural Actor (NA), a new method for high-quality synthesis of
humans from arbitrary viewpoints and under arbitrary controllable poses. 
Our method is developed upon recent neural scene representation and ren-
dering works which learn representations of geometry and appearance from 
only 2D images. While existing works demonstrated compelling rendering
of static scenes and playback of dynamic scenes, photo-realistic reconstruc-
tion and rendering of humans with neural implicit methods, in particular 
under user-controlled novel poses, is still difficult. To address this problem,
we utilize a coarse body model as a proxy to unwarp the surrounding 3D
space into a canonical pose. A neural radiance field learns pose-dependent 
geometric deformations and pose- and view-dependent appearance effects in
the canonical space from multi-view video input. To synthesize novel views
of high-fidelity dynamic geometry and appearance, NA leverages 2D texture 
maps defined on the body model as latent variables for predicting residual
deformations and the dynamic appearance. Experiments demonstrate that
our method achieves better quality than the state-of-the-arts on playback
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as well as novel pose synthesis, and can even generalize well to new poses
that starkly differ from the training poses. Furthermore, our method also
supports shape control on the free-view synthesis of human actors.
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1 INTRODUCTION
Traditional methods for free-viewpoint video generation of humans
from multi-view video input employed passive photogrammetric
methods or template fitting approaches to capture explicit models of
the dynamic geometry and appearance of the moving human [Bor-
shukov et al. 2005; Carranza et al. 2003; Casas et al. 2014; Collet et al.
2015; Li et al. 2014, 2017; Volino et al. 2014; Xu et al. 2011; Zitnick et al.
2004]. Novel views are synthesized with classical graphics renderers.
Capturing such explicit moving human models from images is a
very complex, time-consuming and potentially brittle process. It is
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therefore hard to achieve photo-realistic free-viewpoint video qual-
ity for humans in diverse apparel. Furthermore, these techniques
require animatable person-specific surface templates which need
sophisticated reconstruction and rigging techniques for creating
them.

Recently neural scene representation and renderingmethods [Tewari
et al. 2020c] have been presented to overcome many limitations
of the aforementioned earlier approaches based on explicit com-
puter graphics modeling and rendering techniques. They implicitly
learn representations of shape and appearance from images, which
can be rendered from new viewpoints without requiring explicit
computer graphics models. However, while these approaches show
compelling results on static scenes, applying them to high-quality
free-viewpoint rendering of humans in general clothing, let alone
under novel user-controlled poses, is still difficult.

In this paper, we present a new approach, Neural Actor (NA), for
high-quality free-viewpoint rendering of human actors in everyday
attire. NA can play back captured motion sequences with a large
number of poses as well as synthesize free-viewpoint animations
under user-controlled novel pose sequences. NA takes as inputmulti-
view images of a human actor aswell as the tracked poses of the actor
on the basis of a coarse parametric shape model (SMPL) [Loper et al.
2015]. One challenge we need to address is that simply extending
existing neural representations with a pose vector conditioning is
not enough (see NeRF+pose in Figure 7) to achieve high-quality pose-
dependent renderings. Instead, we explicitly deform the posed space
to the canonical pose space with an inverse skinning transformation
using the SMPL model [Huang et al. 2020]. We then predict residual
deformation [Tretschk et al. 2021] for each pose with a deformation
network, followed by learning pose-conditioned neural radiance
fields in the canonical space. This design enables us to efficiently
handle large movements.

However, the above formulation can still lead to blurry rendering
results (see NA w/o texture in Figure 9). This is due to the complex
dynamics of the surface, pose tracking errors, and the fact that
because of various dynamic effects the mapping from the skeletal
pose to dynamic geometry and appearance is not a bijection, which
therefore cannot be learned reliably using a deterministic neural
model with maximum likelihood objectives (e.g. L1/L2 loss), such as
NeRF [Mildenhall et al. 2020]. Hence, in order to better capture pose-
dependent local shape and appearance changes, we incorporate 2D
texture maps defined on the SMPL model as latent variables into the
scene representation and break down the mapping into two parts,
one from the skeletal pose to pose-dependent texture map and the
other from the pose-dependent texture map to dynamic effects.
The uncertainty in the mapping from the skeletal pose to dynamic
effects can be mitigated in the former part with the adversarial loss
to prevent the training from converging to the mean appearance.
In summary, our contributions are:

• We propose Neural Actor (NA), a new method for realistic
free-view synthesis of moving human actors with dynamic ge-
ometry and appearance. It can play back long pose sequences
and synthesize results for challenging new user-controlled
poses.

• We present a new strategy to learn a deformable radiance
field with SMPL as guidance. It disentangles body movements
into inverse skinning transformations and dynamic residual
deformations where only the latter needs to be learned.

• NA achieves high-quality dynamic geometry and appearance
prediction without blurry artifacts by incorporating 2D tex-
ture maps defined on SMPL as latent variables.

• We captured a new multi-view human performance dataset
with dense camera arrays, which contains four sequences of
human actors performing various motions. We will make this
dataset publicly available.

Scope. Since our method leverages a SMPL model for unwarping
to the canonical space, it can only handle those clothing types that
follow the topological structure of the SMPL model. We regard the
issue of handling loose cloth, such as skirts, as future work and
discuss it in Section 5.

2 RELATED WORK
We will review learning-based approaches to neural scene repre-
sentation and rendering, and generative models for humans. There
are earlier non-learning-based works for video-based character cre-
ation [Casas et al. 2014; Li et al. 2017; Volino et al. 2014; Xu et al.
2011] and free-viewpoint videos [Borshukov et al. 2005; Carranza
et al. 2003; Collet et al. 2015; Li et al. 2014; Zitnick et al. 2004], which
we omit as they are conceptually less related.

Neural Scene Representation and Rendering. Neural scene repre-
sentation and rendering algorithms aim at learning scene repre-
sentations for novel view synthesis from only 2D images. Related
works in this area can be categorized into the rendering of static and
dynamic scenes. Generative Query Networks (GQN) [Eslami et al.
2018] represent a 3D scene as a vectorized embedding and use the
embedding to render novel views. However, since they do not learn
geometric scene structure explicitly, their renderings are rather
coarse. Chen et al. [2019] propose an approach to differentiable ras-
terization by applying local interpolation and distance-based global
aggregation for foreground and background pixels, respectively.
DeepVoxels [Sitzmann et al. 2019a] represents a static scene as voxel
grids to where learnable features are attached. SRN [Sitzmann et al.
2019b] replaces the discretized representation with a continuous
learnable function. Recently, NeRF [Mildenhall et al. 2020] and its
sparse-voxel variant [Liu et al. 2020a] were proposed to model the
scene as a continuous 5D function that maps each spatial point to
the radiance emitted in each direction and uses classical volume
rendering techniques to render images. All these works focus only
on static scenes, while our work targets at a dynamic setting with
pose control, which is more challenging to model.

There are many recent works for dynamic scene rendering. Thies
et al. [2019] assume that a coarse geometry of the scene is given and
a neural texture is learned to synthesize novel views. Weng et al.
[2020] specifically studies free-view synthesis and pose control of a
human from in-the-wild videos. While the setup is very challenging,
their results are still far from video-realistic. Neural Volumes [Lom-
bardi et al. 2019] and its follow-up work [Wang et al. 2020] employ
an encoder-decoder architecture to learn a compressed latent rep-
resentation of a dynamic scene which synthesizes novel views by
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interpolation in the latent space and volume rendering. Inspired
by the recent success of neural radiance fields (NeRF), some works
add a dedicated deformation network [Park et al. 2020; Pumarola
et al. 2020a; Tretschk et al. 2021], scene flow fields [Li et al. 2020],
or space-time neural irradiance fields [Xian et al. 2020] to handle
non-rigid scene deformations. Peng et al. [2021b] propose a set of
latent codes attached to a body model in order to replay character
motions from arbitrary view points. Lombardi et al. [2021] introduce
a mixture of volume primitives to avoid unnecessary sampling in
empty space for dynamic scene rendering. Su et al. [2021] present
an articulated NeRF representation based on a human skeleton for
refining human pose estimation. Most of these works can only play-
back the same dynamic sequence of a scene under novel views. In
contrast, we also model novel poses under novel views, which is
a much harder task because the network needs to generalize to
new views and to new poses. Gafni et al. [2020b] demonstrate the
use of scene representations for synthesizing novel head poses and
facial expressions from a fixed camera view and also generalization
across identities has been demonstrated [Raj et al. 2021b]. Our work
focuses on free-viewpoint synthesis of novel full human body poses.
Compared to modeling the appearance and dynamics of a human
face, modeling entire articulated humans for rendering and novel
pose synthesis is a more challenging problem due to the articulated
structure of the body, the appearance variations, self-occlusions, and
highly articulated motions. There are some concurrent works [Chen
et al. 2021; Peng et al. 2021a], which also propose a geometry-guided
deformable NeRF for synthesizing humans in novel poses. However,
these methods are not able to synthesize pose-dependent dynamic
appearance.

Generative Models for Humans. Recently, generative adversarial
networks (GANs) have made great progress in generating photore-
alistic images of humans and human body parts. Approaches that
convert controllable conditioning inputs into photo-realistic body
parts have been proposed for eyes [Shrivastava et al. 2017], hands
[Mueller et al. 2018], and faces [Ghosh et al. 2020; Kim et al. 2018;
Tewari et al. 2020a,b]. In the context of entire human bodies, many
of the approaches formulate this task as an image-to-image map-
ping problem. Specifically, these methods map the body pose in the
form of rendering of a skeleton [Chan et al. 2019; Kappel et al. 2020;
Kratzwald et al. 2017; Li et al. 2019; Pumarola et al. 2018; Shysheya
et al. 2019; Siarohin et al. 2018; Zhu et al. 2019], projection of a
dense human model [Grigor’ev et al. 2019; Liu et al. 2020b, 2019b,a;
Neverova et al. 2018; Prokudin et al. 2021; Raj et al. 2021a; Sarkar
et al. 2020; Wang et al. 2018], or joint position heatmaps [Aberman
et al. 2019; Ma et al. 2017, 2018] to realistic human images. To better
preserve the appearance from the reference image to the generated
image, some methods [yoo 2021; Liu et al. 2020b; Sarkar et al. 2020]
first transfer the person’s appearance from screen space to UV space
and feed the rendering of the person in the target pose with the UV
texture map into an image-to-image translation network. Unlike
these approaches, Textured Neural Avatar [Shysheya et al. 2019]
learns a person-specific texture map implicitly through backpropa-
gation. To model stochasticity and the ability of sampling random
human appearance, [Esser et al. 2018; Lassner et al. 2017; Sarkar et al.
2021] use the Variational Auto-Encoder [Kingma and Welling 2014]

framework conditioned on 2D pose. All these methods do not learn
scene geometry and cannot ensure multi-view consistency due to
the 2D convolution kernels they used. Furthermore, the GAN-based
neural rendering methods often show conspicuous “shower curtain
effects”, thus making them not suitable for free-viewpoint rendering.
In contrast, our method learns multi-view consistent geometry that
can be rendered by the standard ray marching method to perform
consistent renderings across different camera views.

Recently, there are also works that explicitly or implicitly model
the scene geometry. Wu et al. [2020] translate point clouds of the
human performance into photoreal imagery from novel views. How-
ever, they can only replay the captured performance while we can
also synthesize new performances. Habermann et al. [2021] jointly
learn motion-dependent geometry as well as motion- and view-
dependent dynamic textures from multi-view video input. Although
this method can produce high-quality results, it relies on a person-
specific template which requires a 3D scanner and manual work
for the rigging and skinning. In contrast, our approach leverages
a coarse parametric model – SMPL which removes the need for a
3D scanner and manual work, and also supports reshaping of the
actors body proportions for rendering.

3 NEURAL ACTOR
Problem Formulation. Given a training set of𝐾 synchronized RGB

videos capturing a human actor with𝑇 frames I = {I𝑘
𝑡 } along with

its camera parameters C = {C𝑘
𝑡 } (𝑡 = 1 . . .𝑇 , 𝑘 = 1 . . . 𝐾), our goal

is to build an animatable virtual character with pose-dependent
geometry and appearance that can be driven by arbitrary poses and
rendered from novel viewpoints at test time. Note that we do not
consider background synthesis in this paper and thus we apply color
keying to extract the foreground in the images. Since body poses
are needed as input, we track the body pose 𝝆 for each frame.

We first define a pose-conditioned implicit representation based
on the state-of-the-art novel view synthesis method – NeRF [Milden-
hall et al. 2020] as follows:

𝐹𝜃 : (𝒙, 𝒅; 𝝆) → (𝒄, 𝜎) (1)

where 𝜃 represents the network parameters. This function describes
the color 𝒄 = (𝑟, 𝑔, 𝑏) and density 𝜎 ∈ R+ at spatial location 𝒙 ∈ R3
and view direction 𝒅 ∈ S2, conditioned on a pose vector 𝝆. Then, we
apply the classical volume rendering techniques to render an image
I of a human actor controlled by pose 𝝆 with camera C. Since this
rendering process is differentiable, we can optimize 𝐹𝜃 by comparing
I against the ground truth image without 3D supervision.

Challenges. The first challenge is how to incorporate pose infor-
mation into the neural implicit representation. We observe that a
naïve design choice of 𝐹𝜃 by concatenating the pose vector 𝝆 with
(𝒙, 𝒅) is inefficient for encoding a large number of poses into a single
network for playback, and very difficult to generalize to novel poses
(see NeRF+pose in Figure 7). The second challenge is that learning
dynamic geometric details and appearance of a moving human body
from pose only is an under-constrained problem, because at any
moment the dynamic geometric details and changing appearance of
a moving human body, such as cloth wrinkles, are not completely
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Fig. 2. Overview of Neural Actor. Given a pose, we synthesize images by sampling points along camera rays near the posed SMPL mesh. For each sampled
point 𝑥 , we assign to it the skinning weights of its nearest surface point and predict a residual deformation to transform 𝑥 to the canonical space. We then
learn the radiance field in the canonical pose space to predict the color and density for 𝑥 using multi-view 2D supervision (§ 3.1). The pose-dependent residual
deformation and color are predicted from the local coordinate of 𝑥 along with the texture features extracted from a 2D texture map of the nearest surface
point of 𝑥 . At training time, we use the ground truth texture map generated from multi-view training images to extract the texture features. At test time, the
texture map is predicted from the normal map, which is extracted from the posed SMPL mesh via an image translation network, which is trained separately
with the ground truth texture map as supervision (§ 3.2).

determined by the skeletal pose at that moment. Also, due to in-
evitable pose estimation errors, the association between dynamics
and skeletal poses is even more difficult to learn. The above issues
often lead to blurry artifacts in the output images, especially when
using a deterministic model with maximum likelihood objectives,
such as NeRF.

To tackle the above challenges, NA improves the vanilla NeRF via
template-guided neural radiance fields. First, NA utilizes a deformable
human body model (SMPL) [Loper et al. 2015] as a 3D proxy to de-
form implicit fields (§ 3.1). Second, to handle uncertainty in dynamic
geometry and appearance, NA incorporates texture maps as latent
variables (§ 3.2) and thus can break down the mapping from body
pose to dynamic effects into two parts, one from the pose to the
texture map and the other from the texture map to dynamic effects.
The former part can be trained with the adversarial loss to better
mitigate the uncertainty issue. The texture map serves as a pose
representation to predict pose-dependent effects in the latter part.
An illustration of the overall pipeline is shown in Figure 2.

3.1 Geometry-guided Deformable NeRF
Deformation. Recent studies [Park et al. 2020; Pumarola et al.

2020b; Tretschk et al. 2021] have shown the effectiveness of repre-
senting dynamic scenes by learning a deformation function Φ𝑡 (𝒙) :
R3 → R3 to map every sample point 𝒙 into a shared canonical
space. By doing so, scenes across frames get connected through the
canonical space as the common anchor, which improves training
efficiency. However, restricted by the method design, it is difficult

for these works to model relatively large movements efficiently and
they show limited generalizability to novel poses. To overcome these
drawbacks, we augment this deformation function by querying an
attached human body model – SMPL [Loper et al. 2015]. SMPL is
a skinned vertex-based model (V, F ,W) that represents a wide
variety of body shapes in arbitrary human poses, whereV ∈ R𝑁𝑉 ×3

are the 𝑁𝑉 vertices, and F ∈ {1 . . . 𝑁𝑉 }𝑁𝐹×3 are the vertex indices
defining the triangles of the surface. For each vertex 𝒗 ∈ V , fixed
skinning weights𝝎 ∈ W are assigned, where

∑
𝑗 𝜔 𝑗 = 1, 𝜔 𝑗 ≥ 0,∀𝑗 .

Given a specific person (with fixed body shape), the SMPL model
can be deformed according to the body pose vector 𝝆 via Linear
Blend Skinning [Jacobson et al. 2014]. Since we want to transform
the space in arbitrary poses to the canonical pose space, we perform
an inverse-skinning transformation [Huang et al. 2020] to deform
the SMPL mesh in pose 𝝆 to the canonical pose space:

ΦSMPL (𝒗, 𝝆,𝝎) =
𝑁 𝐽∑
𝑗=1

𝜔 𝑗 ·
(
𝑅 𝑗𝒗 + 𝒕 𝑗

)
, (2)

where (𝑅 𝑗 , 𝒕 𝑗 ) denotes the rotation and translation at each joint 𝑗
that transforms the joints back to the canonical space. Equation (2)
is only defined on the surface of SMPL, but can be extended to any
spatial point in pose 𝝆 by simply copying the transformation from
the nearest point on the surface of SMPL. For any spatial point 𝒙 in
pose 𝝆, we find the nearest point on the SMPL surface as follows:

(𝑢∗, 𝑣∗, 𝑓 ∗) = arg min
𝑢,𝑣,𝑓

∥𝒙 − 𝐵𝑢,𝑣
(
V[F(𝑓 ) ]

)
∥22, (3)
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where 𝑓 ∈ {1 . . . 𝑁𝐹 } is the triangle index, V[F(𝑓 ) ] is the three
vertices of the triangle 𝐹 (𝑓 ), and (𝑢, 𝑣) : 𝑢, 𝑣,𝑢 + 𝑣 ∈ [0, 1] represent
the barycentric coordinates on the face. 𝐵𝑢,𝑣 (.) is the barycentric
interpolation function.

Next, we model the pose-dependent non-rigid deformation which
cannot be captured by standard skinning using a residual function
ΔΦ𝜃 (𝒙, 𝝆), similar to [Pumarola et al. 2020b; Tretschk et al. 2021].
The full deformation model can be represented as:

Φ𝜃 (𝒙, 𝝆) = ΦSMPL (𝒙, 𝝆,𝝎∗) + ΔΦ𝜃 (𝒙, 𝝆), (4)

where 𝝎∗ = 𝐵𝑢∗,𝑣∗
(
W[F(𝑓 ∗) ]

)
are the corresponding skinning

weights of the nearest surface point. The full model allows us to
pose the mesh via skinning as well as to model non-rigid deforma-
tions with the residual function. With this design, learning dynamic
geometry becomes more efficient since we just need to learn a resid-
ual deformation for each pose. Also,ΔΦ𝜃 (𝒙, 𝝆) serves to compensate
unavoidable tracking errors in marker-less motion capture.

Rendering. Once points are deformed into the canonical space, we
learn NeRF in this space following Equation (1). The final pixel color
is predicted through volume rendering [Kajiya and Von Herzen
1984] with 𝑁 consecutive samples {𝒙1, . . . 𝒙𝑁 } along the ray 𝒓 :

I(𝒓, 𝝆) =
𝑁∑
𝑛=1

(
𝑛−1∏
𝑚=1

𝑒−𝜎𝑚 ·𝛿𝑚
)
·
(
1 − 𝑒−𝜎𝑛 ·𝛿𝑛

)
· 𝒄𝑛, (5)

where 𝜎𝑛 = 𝜎 (Φ𝜃 (𝒙𝑛, 𝝆)), 𝒄𝑛 = 𝒄
(
Φ𝜃 (𝒙𝑛, 𝝆), 𝒅, 𝝆

)
and 𝛿𝑛 = ∥𝒙𝑛 −

𝒙𝑛−1∥2. Note that we use only the deformed points to estimate
densities (𝜎) to enforce learning the shared space, while including
pose 𝝆 to predict colors (𝒄) with pose-dependent phenomena (e.g.
shadows). Here, we do not use the pose vector as input to NeRF
directly. Instead, we use the texture map as input serving as a local
pose representation to better infer dynamic effects, which we will
elaborate later.
The vanilla NeRF uses a hierarchical sampling strategy: the sec-

ond stage samples more points where the initial uniform samples
have a higher probability. We interpret it as sampling based on
the geometry learned in the first stage. In our setting, since the
SMPL mesh is given, we adopt a geometry-guided ray marching
process to speed up the volume rendering process. As shown in
Figure 3, we take uniform samples but only accept samples 𝒙 if
min𝒗∈V ∥𝒙 − 𝒗∥2 < 𝛾 , where 𝛾 is a hyperparameter which defines
how close SMPL approximates the actual surface. More implemen-
tation details can be found in Appendix.

3.2 Texture Map as Latent Variables
NeRF is only capable of learning a deterministic regression function,
which makes it not suitable for handling uncertainty involved in
modeling dynamic details. As mentioned earlier, the mapping from
the skeletal pose to dynamic geometry and appearance is not a bijec-
tion. Consequently, direct regression often leads to blurry outputs
(see ‘NA w/o texture’ in Figure 9). A common approach is to incor-
porate latent variable 𝒛, i.e. 𝑝 (𝜎, 𝒄 |𝝆) =

∫
𝒛 𝑝 (𝜎, 𝒄 |𝒛, 𝝆) · 𝑝 (𝒛 |𝝆)𝑑𝒛.

For example, we can choose 𝒛 as spherical Gaussian and model the
NeRF output (𝜎, 𝒄) using conditional VAEs [Kingma and Welling
2014; Lombardi et al. 2019].

Fig. 3. Illustration of geometry-guided ray marching.

In contrast to common choices, we take the full advantage of the
SMPL template and learn structure-aware latent variables. Specif-
ically, we take a 2D texture map Z ∈ R𝐻×𝑊 ×𝐶 as the latent vari-
able, which is defined based on a fixed UV parameterization A ∈
[0, 1]𝑁𝐹×3×2 which maps points on the 3D mesh surface to a 2D UV
plane. There are three advantages of choosing suchZ:
(1) Compared to a compressed representation (e.g. latent vectors

used in [Lombardi et al. 2019]), the texture map has higher res-
olution, making it possible to capture local details. The local
information can be used as a local pose representation to infer
the local geometry and appearance changes in the scene repre-
sentation. Furthermore, this local pose representation, compared
to a global pose representation (e.g. a pose vector), facilitates
the generalizability of NA to novel poses.

(2) A simple posterior 𝑞(Z|I, 𝝆) is available. That is, during train-
ing, the texture map Z for each training frame can be obtained
by back-projecting the training images of each frame to all visi-
ble vertices and generate the final texture map by calculating
the median of the most orthogonal texels from all views, as done
in Alldieck et al. [2018]. As we do not need to update 𝑞, learning
of 𝑝 (𝜎, 𝒄 |𝝆) can be readily split into two parts, learning of the
prior 𝑝 (Z|𝝆), and learning of the rendering 𝑝 (I |Z, 𝝆).

(3) Inspired by Liu et al. [2020b], the learning of the prior model
𝑝 (Z|𝝆) can be formulated as an image-to-image translation task
which maps normal maps generated from the posed meshes to
texture maps. Fortunately, such a problem has been well-studied
in the literature. To better preserve temporal consistency, we
use vid2vid [Wang et al. 2018] to predict high-resolution texture
maps from normal maps. The adversarial loss in vid2vid prevents
the training from converging to the mean value of I and thus
mitigates the uncertainty issue.

As shown in Figure 2, we apply an additional feature extractor 𝐺 (.)
after Z to extract high-level features of the surface appearance
which contain significantly more information than the RGB values
of the texture maps. For any spatial point 𝑥 , its pose-dependent
local properties depend on the extracted features ofZ at its nearest
surface point searched through Equation (3) and its local coordinate
(𝑢, 𝑣, ℎ) where (𝑢, 𝑣) is the texture coordinate of the nearest surface
point and ℎ is the signed distance to the surface. The feature extrac-
tor is trained together with the geometry-guided fields (§ 3.1) for
predicting both residual deformations and dynamic appearance.
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4 EXPERIMENTS
Datasets. To validate our approach, we tested on eight sequences

from three different datasets, including one captured by ourselves,
which contain different actors wearing various textured clothing.
We used two sequences, 𝑆1 and 𝑆2, from theDeepCap dataset [Haber-
mann et al. 2020] with 11 and 12 cameras, respectively, at a resolution
of 1024× 1024. 𝑆1 contains 38,194 training frames and 23,062 testing
frames; 𝑆2 has 33, 605 training frames and 23,062 testing frames. We
also evaluated on two sequences, 𝐷1 and 𝐷2, from the DynaCap
dataset [Habermann et al. 2021], under a dense camera setup at a
resolution of 1285 × 940. The two sequences have approximately
20,000 and 7,000 frames for training and testing, respectively. For
the D1 sequence, we used 43 cameras for training and 4 uniformly
distributed held-out cameras for the evaluation of our method on
novel camera views; for the D2 sequence, we used 100 cameras for
training.

To further evaluate our method on a wider variety of body poses
and more challenging textured clothing, we captured a new multi-
view human performance corpus with 79−86 cameras at a resolution
of 1285 × 940. It contains four sequences, 𝑁1-𝑁4, and each has
12,000 − 16,000 frames for training and around 8, 000 frames for
testing. All the actors have given consent in signed written forms
to the use of their recordings and synthesized results in this work.
We will make the dataset publicly available. See Figure 15 in the
Appendix for the detailed information of the training data.

In addition, to demonstrate the generalizability of the proposed
method, we additionally tested our method with various dancing
motions from the AIST dataset [Li et al. 2021; Tsuchida et al. 2019]
and very challenging motions from the AMASS dataset [Mahmood
et al. 2019] as the driving poses. Note that these poses are quite
distinct from the training poses, thus making the reenactment task
challenging.

Data Processing. Since we are only interested in foreground syn-
thesis, we use color keying to extract the foreground in each image.
We then employ an off-the-shelf SMPL tracking system1 to optimize
the shape parameters of SMPL as well as the global translation and
the SMPL’s pose parameters (a 72-dimensional vector). The pose
parameters include the root orientation and the axis-angle repre-
sentations of the relative rotations of 23 body parts with respect
to its parent in the kinematic tree. We further normalize the global
translation for camera positions and the tracked geometry in our
model as well as the baseline models.

We follow the standard texture generation step in [Alldieck et al.
2018] to generate ground truth texture maps for training the im-
age translation network. In our early development, we observed in
the experiments that the boundary pixels in the UV space cannot
preserve continuity in the 3D space, which could affect the texture
feature extraction stage in our method. We take two measures to
alleviate this problem. First, we cut the seam of the SMPL mesh in
Blender and unwarp the mesh into one piece in the UV space. Sec-
ond, we perform inpainting on the dilated region of the generated
texture maps. An example of the resulted texture map is presented
in Figure 2.

1https://github.com/zju3dv/EasyMocap

Implementation Details. We model the residual deformation net-
works ΔΦ as 2-layer MLPs, and follow the network design of NeRF
[Mildenhall et al. 2020] to predict density and color of each spatial
location in the canonical space. We apply positional encoding to spa-
tial location with a maximum frequency of 𝐿 = 6. The texture map
Z is at a resolution of 512 × 512. We use the backbone of ResNet34,
which was pre-trained on ImageNet, as the texture feature extractor
𝐺 (.) to extract features from texture maps. We extract feature maps
prior to the first 4 pooling layers, upsample them using bilinear in-
terpolation and concatenate them to form multi-level features as the
output𝐺 (Z) in 256×256×512, similar to [Yu et al. 2020]. A detailed
illustration of the proposed architecture is shown in Figure 14.

The texture feature extractor is trained together with the residual
deformation network as well as NeRF in the canonical space with
the L2 loss measuring the difference between the rendered images
and ground truth images. The training takes around 2 days on 8
Nvidia V100 32G GPUs for 300K iterations with a batch size of 1024
rays per GPU. For learning the prior, we used vid2vid [Wang et al.
2018]2 with the default setting to predict texture maps at 512 × 512
pixels from normal maps in 512 × 512. We trained vid2vid on 4
Nvidia Quadro RTX 8000 48G GPUs with batchsize 4 per GPU for
about 10K iterations for around 3 days. Since these two steps are
independent, we can train them in parallel. At test time, rendering
a 940x1285 image takes around 4 seconds, and 6-8G GPU memory.

4.1 Qualitative Results
Since our model only requires the posed SMPL mesh as condition
for novel view synthesis, it can easily perform applications such as
reenactment and body reshape.

Reenactment. We directly use the pose parameters from the driv-
ing person and the shape parameters from the target person to get
the posed SMPL mesh. Figure 4 shows example reenactment results
where we use the testing poses from the DeepCap dataset [Haber-
mann et al. 2020] and the AIST dataset [Li et al. 2021; Tsuchida et al.
2019] as driving poses, respectively. We can see that our method
can synthesize faithful imagery of humans with fine-scale details
in various motions and generalize well to challenging motions. In
addition, we further test our approach on some very challenging
poses, such as crunch, bending forward. As shown in Figure 6, our
approach is able to produce plausible synthesized results of such
challenging poses, which significantly outperforms the baseline
methods. Note that NV cannot perform reenactment where a per-
son drives a different person since it requires the captured images
as input at test time.

Body Reshape. As shown in Figure 5, we can adjust the shape
parameters (PC1 and PC2) of the SMPL template to synthesize ani-
mations of the human in different shapes. Specifically, at inference
time, we first warp the posed space to the canonical pose space for
the reshaped human template via inverse kinematic transforma-
tion, and then transform the canonical pose space of the reshaped
template to that of the original shape template and finally infer the
color and density in the original canonical space. This technique
will be potentially useful for the movie industry, e.g. we are able to

2https://github.com/NVlabs/imaginaire
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Fig. 4. Qualitative reenactment results with the driving poses from the DeepCap testing set [Habermann et al. 2020] and the AIST dataset [Li et al. 2021;
Tsuchida et al. 2019]. Note that our method can synthesize photorealistic images of human characters even for the unseen poses and views that strongly differ
from the training poses. Courtesy of Tsuchida et al. [2019] for the AIST reference image.

synthesize animations of a giant or dwarf by modifying the shape
parameters of any actor, without the need of finding the actual hu-
man in that shape. Please refer to the supplemental videos for more
results.

4.2 Comparisons
We validate the proposed method on two tasks: novel view synthesis
and novel pose synthesis, comparing with recent baselines.

Novel Camera View Synthesis. For this comparison, we evaluate
on the D1 sequence, where 43 cameras are used for training and
4 uniformly distributed held-out cameras are used for evaluation.

ACM Trans. Graph., Vol. 40, No. 6, Article 219. Publication date: December 2021.
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Fig. 5. Rendering results of our method for different body shape configurations of the same actor. Note that our method can also produce photorealistic
results for shapes that strongly differ from the original shape of the actor.

Fig. 6. Comparison on novel pose synthesis with very challenging poses.

We compare our method with four state-of-the-art neural rendering
methods. More precisely, we compare to:

• NeRF+pose:We extendNeRF [Mildenhall et al. 2020], a state-of-the-
art view synthesis method for static scenes, to a pose-conditioned
NeRF by feeding a pose vector into the vanilla NeRF directly.

• Neural Volumes (NV) [Lombardi et al. 2019]: NV utilizes an encoder-
decoder architecture to learn a latent representation of a dynamic
scene that enables it to sample or interpolate a latent vector to
produce novel content. We follow the original setting of NV, and
provide the images captured from three uniformly distributed
cameras at both training and test stages for each pose to encode
the content into the latent space.

• Neural Body (NB) [Peng et al. 2021b]: NB extends the vanilla NeRF
by utilizing sparseCNNs to encode spatial features from the posed
mesh. We follow the original setting of NB.

• Multi-View Neural Human Rendering (NHR) [Wu et al. 2020]: NHR
extracts 3D features directly from the input point cloud and
project them into 2D features. We use the vertices of the SMPL
model as the input point cloud.

Table 1. Novel camera view synthesis on the training poses of D1

Models PSNR↑ SSIM↑ LPIPS↓ FID↓

NeRF + pose 22.791 0.921 0.156 146.135
NV 24.248 0.924 0.149 131.86
NB 24.447 0.934 0.116 119.04
NHR 22.587 0.928 0.072 164.85
NA (Ours) 24.875 0.941 0.079 45.649
NA w. GT (Ours) 27.567 0.959 0.071 43.089

We show the quantitative results in Table 1 and include the visual
results in the supplemental video. For all the baseline methods, it
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Fig. 7. Qualitative comparisons on novel pose synthesis with eight sequences. Our method can faithfully recover the pose-dependent wrinkles and appearance
details which cannot be achieved by other baseline methods.

is difficult to perform photo-realistic rendering for playback when
the training set contains a large number of different poses, e.g. pose
sequenceswith 20K frames. Note thatNV andNB have demonstrated
good results in their work for playing back a short sequence, e.g.
300 frames, however, encoding a large number of frames, e.g. 20K
frames into a single scene representation network tends to produce
blurriness in the results due to the large variations in the training
data. Simply feeding pose vectors into NeRF (NeRF+pose), which
was similarly used in [Gafni et al. 2020a]), is not efficient for training
since full deformations need to be learned. Furthermore, NeRF+pose
produces blurry artifacts due to the uncertainty in the mapping from

the skeletal pose to dynamic geometry and appearance.NHR also has
difficulties in encoding a large number of poses and leads to blurry
results. In contrast, our method improves the training efficiency and
resolves the blurriness issue by disentangling the full deformation
into inverse kinematic transformation and residual deformation and
learning a prior with texture maps to resolve the blurriness issue.
With these strategies, we can synthesize high-quality renderings of
humans with sharp dynamic appearance for the playback of a long
sequence. We note that our results can further be improved when
the multi-view images are provided for generating the ‘Ground
Truth’ texture maps at test time (see NA w. GT ).
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Table 2. The quantitative comparisons on test poses of eight sequences. We use three metrics: PSNR, FID [Heusel et al. 2017a] and LPIPS [Zhang et al. 2018]
to evaluate the rendering quality. To reduce the influence of white background, all the scores are calculated from the images cropped with a maximum 2D
bounding box which is estimated from the foreground masks of all the target images. The scores are averaged over all the training views of every 10th test
poses. Note that, since PSNR is a metric based on least squares measurement, it does not faithfully measure image sharpness and so cannot properly account
for the nuances of human visual perception. [Zhang et al. 2018].

D1 D2 S1 S2

Models PSNR↑ LPIPS↓ FID ↓ PSNR↑ LPIPS↓ FID ↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

NeRF + pose 22.791 0.156 146.14 23.339 0.123 134.22 22.328 0.158 126.44 23.445 0.134 112.11
NV 20.648 0.171 135.57 21.020 0.143 122.36 18.661 0.190 123.04 19.076 0.173 98.063
NB 23.768 0.119 117.73 23.872 0.112 124.39 22.967 0.114 92.098 23.946 0.096 81.527
NHR 22.237 0.075 162.62 22.997 0.070 138.25 14.530 0.217 124.56 22.419 0.073 149.16
NA (Ours) 23.547 0.084 44.921 23.785 0.065 46.812 22.495 0.084 34.361 23.531 0.066 19.714

N1 N2 N3 N4

Models PSNR↑ LPIPS↓ FID ↓ PSNR↑ LPIPS↓ FID ↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

NeRF + pose 22.892 0.174 125.83 23.922 0.142 126.34 24.621 0.113 106.30 23.648 0.162 153.30
NV 20.901 0.183 104.13 21.372 0.155 100.82 21.394 0.132 108.42 20.617 0.181 115.00
NB 23.159 0.153 107.72 24.006 0.115 91.218 25.273 0.093 76.124 24.192 0.140 111.78
NHR 21.630 0.098 117.42 22.806 0.075 175.00 23.719 0.062 91.535 22.744 0.092 164.23
NA (Ours) 22.799 0.084 30.218 24.345 0.080 39.918 25.014 0.057 25.946 23.861 0.079 28.525

Novel Pose Synthesis. For novel pose synthesis, we first conduct
a comparison with the above four baselines on eight sequences,
where the testing poses are used for evaluation. The qualitative and
quantitative results are reported in Figure 7 and Table 2, respectively.
NeRF+pose and NV produce severe artifacts in the results, such as
missing body parts and blurriness. NB and NHR also suffer from
blurriness and cannot preserve dynamic details in the results. Our
method can generalize to new poses well and achieve high-quality
results with sharp details which are significantly better than the
baseline methods. Our method proposes three main design choices
that lead to an improvement over the baselines: 1) NA disentan-
gles body movements into inverse skinning transformations and
dynamic residual deformations where only the latter needs to be
learned, thus facilitating the training efficiency; 2) By incorporat-
ing 2D texture maps as latent variables, NA effectively mitigates
the uncertainty in the mapping from the skeletal pose to dynamic
geometry and appearance; 3) The local features extracted from the
high-resolution texture maps serve as a local pose representation
for inferring local changes in geometry and appearance. This local
representation not only enables better capturing of geometric details
but also makes the model generalize well to new poses.

We further compare with a recent mesh-based method, Real-time
Deep Dynamic Characters (DDC) [Habermann et al. 2021], on the
D1 sequence. The original DDC requires a person-specific template
captured by a 3D scanner. Since our method only needs the SMPL
model, as requested, a comparison has been conducted with the
SMPL model as input (DDC with SMPL). We also provided the origi-
nal result of DDC with a person-specific template for reference. As
shown in the Figure 8, DDC works well with a person-specific tem-
plate, however, deforming a coarse SMPL mesh is more challenging,
which leads to artifacts on the deformed geometry, such as the head.

Our method is also related to Textured Neural Avatar (TNA).
However, because its code and data are not available, we will just

Fig. 8. Comparison to DDC. While the template-based approach DDC
produces high-quality results, it requires a personalized 3D scan of the
actor and manual work is needed for the rigging and skinning. To bring
their setting closer to ours, we also compare to DDC where we replace the
template with the SMPL model. Note that simply applying their method
with a SMPL model results in geometric artifacts. In contrast, our method
achieves a similar quality to their original method without requiring a
personalized template.

conceptually discuss the difference with that work. Different from
our method, TNA is unable to synthesize dynamic appearance of
humans. Moreover, their results are not view-consistent and often
suffer from artifacts such as missing body parts (see supplemental
video).

4.3 Ablation Study
We conducted ablation studies on D1 and evaluated on four test
views for every 10th frame.
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Models PSNR↑ SSIM↑ LPIPS↓ FID↓

NA (Full model) 23.547 0.928 0.084 44.921
w/o texture inputs 24.181 0.930 0.131 108.30
raw texture inputs 23.110 0.916 0.142 105.45
normal map inputs 19.316 0.887 0.167 148.56

Fig. 9. Ablation on using texture features as latent variables. (Left) Quantitative results; (Right) Visual comparison.

Models PSNR↑ SSIM↑ LPIPS↓ FID↓

NA (Full model) 23.547 0.928 0.084 44.921
w/o residual deformation 23.532 0.926 0.093 56.580
w/o geometry guidance 21.635 0.909 0.137 72.379

using nearest vertex 23.625 0.930 0.092 70.768

Fig. 10. Ablation on geometry-guided deformation prediction. (Left) Quantitative results; (Right) Visual comparison.

Models PSNR↑ SSIM↑ LPIPS↓ FID↓

NA (Full data) 23.547 0.928 0.084 44.921
w/ 5 cameras 23.080 0.926 0.082 52.673
w/ 195 frames 22.467 0.920 0.078 50.55

Fig. 11. Ablation on sparse inputs. (Left) Quantitative results; (Right) Visual comparison.

Effect of Texture Features. In Figure 9, we first analyzed the effect
of using texture features as latent variables. In our method, each
sampled point is concatenated with the texture features extracted
from the 2D texture map at its nearest surface point as condition-
ing for the prediction of the residual deformation and dynamic
appearance. We compare with: 1) w/o texture: neither texture nor
extracted texture features are provided. Here, we use a pose vector
as conditioning; 2) w/o feature extractor (raw texture inputs): no
feature extraction is performed on the 2D texture map, that is, the
texture color of the nearest surface point is used as conditioning;
and 3) w/o texture w/ normal (normal map inputs): we extract the
high-dimensional features on the normal map and use the features
as conditioning.

We found that, compared to a compressed pose vector, the 2D tex-
ture map contains more spatial information, such as pose-dependent
local details. Furthermore, the feature extractor can encode both
local and global information and thus achieves better quality. We
also observed that using the features directly extracted from the
normal map results in very poor results. This is because the whole
normal map can represent pose information while a single pixel on
the normal map does not provide any information.

Effect of Geometry-guided Deformation. We further evaluated the
effect of using the SMPL model as a 3D proxy to disentangle inverse
kinematic transformations and residual non-rigid deformations. We
compare with: 1) w/o residual deformations: the spatial point in the
posed space transforms to the canonical space with only an inverse
kinematic transformation; 2) w/o geometry guidance: we directly
predict the full movements with the deformation network. As shown
in Figure 10, modeling the full deformations as inverse kinematic
transformations and the residual non-rigid deformations yields the
best quality. Directly learning full deformations is not efficient thus
results in severe artifacts. We further compared copying the infor-
mation (skinning weights and texture features) from the nearest
point on the surface with copying from the nearest vertex. Since our
body model is coarse, copying information from the nearest surface
points leads to an improvement.

Sparse Inputs. We tested our method with sparse training cam-
eras and training frames as inputs. Specifically, we designed two
experimental settings, one with 5 training cameras uniformly dis-
tributed on an upper sphere and the other with 195 training frames
uniformly sampled in the training sequence with 19,500 frames. As
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Fig. 12. A failure case of rendering hands. (Left) our result; (Right) ground
truth.

Fig. 13. Failure cases on difficult poses.

shown in Figure 11, our method does not suffer from a significant
performance drop with sparse inputs.

5 LIMITATIONS
Our proposed method leverages the SMPL model for unwarping to
the canonical space. Consequently, our method can handle clothing
types that roughly follow the topological structure of the SMPL
model, but cannot handle more loose clothing such as skirts. There-
fore future work is needed to leverage explicit cloth models on top
of the SMPL model for the unwarping step. Our method is not able
to faithfully generate the fingers (see Figure 12 for a failure example).
This is because the hand is not tracked, and thus the SMPL hand
is open while the GT hand is often a fist leading to severe noise in
the generated GT textures for the hands, which makes the resulting
input texture features to the NeRF very noisy and learning hand tex-
tures difficult. In fact, even when using an improved human model
(such as SMPL-X), robust hand synthesis can still be challenging
because of the difficulty in accurately tracking hand gestrures due to
the low resolution of hand images within a full body image. It will be
our future work to study how to synthesize human characters with
hands. While our method can generalize well to challenging unseen
poses, like other learning-based methods, it may fail when the pose
is of a totally different type from the training poses or when there
is excessive joint bending, as shown in Figure 13. Moreover, our
method is a person-specific model. Extending it to a multi-person
model should be explored as future work.

6 CONCLUSION
We presented Neural Actor, a new method for high-fidelity image
synthesis of human characters from arbitrary viewpoints and under
arbitrary controllable poses. To model moving human characters,
we utilize a coarse parametric body model as a 3D proxy to unwarp

the 3D space surrounding the posed body mesh into a canonical
pose space. Then a neural radiance field in the canonical pose space
is used to learn pose-induced geometric deformations as well as both
pose-induced and view-induced appearance effects in the canonical
space. In addition, to synthesize high-fidelity dynamic geometry and
appearance, we incorporate 2D texture maps defined on the body
model as latent variables for predicting residual deformations and
the dynamic appearance. Extensive experiments demonstrated that
our method outperforms the state-of-the-arts in terms of rendering
quality and produces faithful pose- and view-dependent appearance
changes and wrinkle patterns. Furthermore, our method general-
izes well to novel poses that starkly differ from the training poses,
and supports the synthesis of human actors with controllable new
shapes.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 Architecture
As shown in Figure 2, our method consists of 4 components: (1)
an image translation network; (2) a texture feature extractor; (3)
a deformation network; and (4) a NeRF model. We describe each
component in detail in the following.

Image translation network. We adopt vid2vid [Wang et al. 2018]
with the default setting using the official implementation3. The size
of the normal map and the texture map is 512 × 512.

Texture feature extractor. Weuse the feature extractor of ResNet34
backbone pretrained on ImageNet to extract features from texture
maps. The extractor is jointly trained with the deformation net-
work and the NeRF model. We extract feature maps prior to the
first 4 pooling layers, upsample using bilinear interpolation and
concatenate them to form the feature maps of 512 channels.

Deformation network & NeRF. . See Figure 14 for the network
architecture for the deformation network and NeRF.

A.2 Algorithms
Volume rendering. As described in § 3.1, to speed up the rendering

process, we adopt a geometry-guided ray marching process for
volume rendering. See Algorithm 1 for implementation details. In
our implementation, we set 𝑁 = 64 and 𝛾 = 0.06 or 0.08 for all
sequences.

ALGORITHM 1: Geometry-guided Ray Marching
Input: camera 𝒑0, ray direction 𝒅, mesh vertices V , 𝛾 , 𝑁
Initialize: 𝑧min = +∞, 𝑧max = −∞
for 𝒗 ∈ V do

𝑧0 = (𝒗 − 𝒑0)⊤ · 𝒅
if ∥𝒗 − 𝒑0 ∥22 − 𝑧20 < 𝛾2 then

Δ𝑧 =

√
𝛾2 −

(
∥𝒗 − 𝒑0 ∥22 − 𝑧20

)
if 𝑧0 + Δ𝑧 > 𝑧max then

𝑧max = 𝑧0 + Δ𝑧
end
if 𝑧0 − Δ𝑧 < 𝑧min then

𝑧min = 𝑧0 − Δ𝑧
end

end
end
if 𝑧min < 𝑧max then

Uniformly sample 𝑁 points in [𝑧min, 𝑧max ] and perform volume
rendering.

end
else

Ray missed the geometry. Abort.
end

Finding the nearest surface point. For each point on the ray, we
search the nearest surface point and its (𝑢, 𝑣) coordinate from the as-
sociated SMPLmodel followingAlogrithm 2where Project_to_plane

3https://github.com/NVlabs/imaginaire
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Fig. 14. Visualization of the architecture of the proposed deformation and NeRF networks. The number inside each block signifies the vector’s dimension. All the
layers are standard fully-connected layers with ReLU activation except for the output layer wherewe do not use activation to predict deformation, density and col-
ors (RGB). “+” denotes vector concatenation. The positional encoding function is defined as PE𝐿 (𝒙) =

[
𝒙, sin

(
20𝒙

)
, cos

(
20𝒙

)
, . . . , sin

(
2𝐿−1𝒙

)
, cos

(
2𝐿−1𝒙

) ]
.

ALGORITHM 2: Distance to Nearest Surface Point
Input: sampled point 𝒙 , mesh {V, F}
Initialize: 𝑙min = +∞
for 𝒇 ∈ F do

𝒙0 = Project_to_plane(𝒙, 𝒇 )
if 𝒙0 is inside 𝒇 then

𝑙 = ∥𝒙 − 𝒙0 ∥2
end
else

𝒂 = V[𝒇1 ] , 𝒃 = V[𝒇2 ] , 𝒄 = V[𝒇3 ]
𝒙𝑐 = Project_to_edge(𝒙, 𝒂𝒃)
𝒙𝑏 = Project_to_edge(𝒙, 𝒂𝒄)
𝒙𝑎 = Project_to_edge(𝒙,𝒃𝒄)
𝑙 = min�̂�∈{𝒙𝑎 ,𝒙𝑏 ,𝒙𝑐 } ∥𝒙 − �̂� ∥2

end
if 𝑙 < 𝑙min then

𝑙min = 𝑙

end
end
return 𝑙min

and Project_to_edge are the functions of finding the nearest points
on the planes and line segments, respectively.

We implement specialized CUDA kernels for both algorithms to
achieve better efficiency.

B ADDITIONAL BASELINE SETTINGS
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] + pose. We

extend the vanilla NeRF, which is designed for static scene rendering,
to a pose-conditioned NeRF. Specifically, we concatenate the pose
vector (a 72-dimensional vector) with the positional encoding of
(𝑥,𝑦, 𝑧) for each frame.We use a Pytorch reimplementation of NeRF4
and follow the default hyper-parameters. For a fair comparison, we
employ the same sampling strategy used in our method for NeRF,

4https://github.com/facebookresearch/NSVF

as described in appendix A.2. We train NeRF for 300K iterations on
8 GPUs with the same batch size as our model.

Neural Volumes (NV) [Lombardi et al. 2019]. We use the original
code open-sourced by the authors5. We use batch size of 4 per GPU
and 128×128 rays per image. We normalize the global translation of
the scenes while keeping the rotation. All models on eight sequences
were trained for 300K iterations on 4 GPUs. Since NV requires
images to encode the scene content into a latent vector, we provide
the images captured by three uniformly distributed cameras to
obtain the latent vector for each pose at both training and testing
stage.

Neural Body (NB) [Peng et al. 2021b]. We follow the author-provided
code 6 and run all the experiments using the default training set-
tings.

Multi-View Neural Human Rendering (NHR) [Wu et al. 2020]. We
follow the author-provided code 7 and run all the experiments using
the default training settings.

Real-time Deep Dynamic Characters (DDC) [Habermann et al.
2021]. Training DDC has four stages: (1) EGNet was trained for
360,000 iterations with a batch size of 40, which takes 20 hours;
(2) The lighting was optimized with a batch size of 4, a learning
rate of 0.0001, and 30,000 iterations, which takes around 7 hours;
(3) DeltaNet was trained for 360,000 iterations using a batch size
of 8 and a learning rate of 0.0001 which takes 2 days. (4) TexNet
was trained with a batch size of 12 and a learning rate of 0.0001 for
720,000 iterations for 4 days. These four networks were trained on
4 NVIDIA Quadro RTX 8000 with 48GB of memory.

C ADDITIONAL INFORMATION OF TRAINING DATA
The detailed information of the training data is included in Figure 15.

5https://github.com/facebookresearch/neuralvolumes
6https://github.com/zju3dv/neuralbody
7https://github.com/wuminye/NHR
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Fig. 15. Detailed information of the eight sequences used in the experiments, with two sequences (D1 and D2) from the DynaCap dataset [Habermann et al.
2021] and two sequences (S1, S2) from the DeepCap dataset [Habermann et al. 2020] and four sequences captured by ourselves (N1-4). For all the images, the
background has been removed and the camera parameters are given.

D DEFINITION OF EVALUATION METRICS
PSNR. The Peak Signal-to-Noise Ratio (PSNR) can be defined as a

logarithmic quantity using the decibel scale of the mean squared er-
ror (MSE). See the implementation at https://scikit-image.org/docs/
stable/api/skimage.metrics.html#skimage.metrics.peak_signal_noise_
ratio.

SSIM [Zhou Wang et al. 2004]. The Structural Similarity Index
Measure (SSIM) is a perception-based model that considers image
degradation as perceived change in structural information, while
also incorporating important perceptual phenomena, including both
luminance masking and contrast masking terms. See more details

at https://scikit-image.org/docs/stable/api/skimage.metrics.html#
structural-similarity.

LPIPS [Zhang et al. 2018]. The Learned Perceptual Image Patch
Similarity (LPIPS) is a perceptual loss, which corresponds well to
human visual perception. We used the implementation from https:
//github.com/S-aiueo32/lpips-pytorch

FID [Heusel et al. 2017b]. The Frechet Inception Distance (FID)
is a widely-used metric for generative models, which measures
the similarity of generated images to real images. We used the
implementation from https://github.com/mseitzer/pytorch-fid
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