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Abstract

Evaluating text-to-image generative models remains a challenge, despite the re-
markable progress being made in their overall performances. While existing metrics
like CLIPScore work for coarse evaluations, they lack the sensitivity to distinguish
finer differences as model performance rapidly improves. In this work, we focus
on the text rendering aspect of these models, which provides a lens for evaluating a
generative model’s fine-grained instruction-following capabilities. To this end, we
introduce a new evaluation framework called TYPESCORE to sensitively assess a
model’s ability to generate images with high-fidelity embedded text by following
precise instructions. We argue that this text generation capability serves as a proxy
for general instruction-following ability in image synthesis. TYPESCORE uses
an additional image description model and leverages an ensemble dissimilarity
measure between the original and extracted text to evaluate the fidelity of the ren-
dered text. Our proposed metric demonstrates greater resolution than CLIPScore to
differentiate popular image generation models across a range of instructions with
diverse text styles. Our study also evaluates how well these vision-language mod-
els (VLMs) adhere to stylistic instructions, disentangling style evaluation from
embedded-text fidelity. Through human evaluation studies, we quantitatively meta-
evaluate the effectiveness of the metric. Comprehensive analysis is conducted to
explore factors such as text length, captioning models, and current progress towards
human parity on this task. The framework provides insights into remaining gaps in
instruction-following for image generation with embedded text. 1

1 Introduction

Image generation models have seen significant advancements in recent years, producing high-
quality and diverse synthetic images. Notable examples include DALL-E 3 [Ramesh et al., 2021],
ideogram [Ideogram AI, 2023], Stable Diffusion [Rombach et al., 2022], MidJourney [MidJourney,
2022], Imagen [Saharia et al., 2022], Dream [WOMBO, 2021] and Adobe Firefly [Adobe, 2023].
However, even these high-quality image generation models often struggle to generate images with
specific text embedded within them. This lack of embedded-text fidelity can take the form of typos,
repeated or missing characters and words, extraneous characters, and unreadable glyphs.

Unfortunately, current metrics such as CLIPScore [Hessel et al., 2021] are unsuitable for measuring
embedded-text fidelity. These metrics work well when there is a large performance gap between
models [Bianchi et al., 2024], but are not sensitive to more nuanced improvements as the quality of
generation improves [Chen et al., 2023a] because they rely on image embeddings that can lose the
fine-grained details required to detect nuanced differences. As the quality of image generation has

1Code and data will be made publicly available soon to facilitate future work on this challenging problem.
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improved, there is a growing need for new metrics specifically designed to evaluate these models’
instruction-following capability in a microscopic manner.
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Figure 1: When assessing target image generation models pθ, we provide the model with a set of
instructions. These instructions prompt the model to create a set of images i based on specified quoted
text within a particular style, alongside some contextual information. We then use a vision-language
model qϕ (e.g. GPT-4o) to extract the text from the generated images, and compute the similarity
score between the generated text t̂ and the original quote t. TYPESCORE is calculated by averaging
the scores obtained from multiple image generations. Common text-image alignment metrics such as
CLIPScore produce indistinguishable results for both image generation models under this prompt.

We aim to bridge this gap by introducing a new evaluation metric that probes the performance
differences among competitive image generation models. We propose TYPESCORE, an evaluation
metric designed to assess the fidelity of embedded text in generated images (Figure 1). TYPESCORE
offers a precise and nuanced assessment of embedded-text fidelity, incorporating key factors such
as legibility and accuracy. Style can be a confounding factor in assessing embedded-text fidelity.
We present effective methods to ground the generation with rich contextual and style instructions to
create a controlled environment that minimizes the confounding aspects like text font, typeface, and
aesthetic integration.

The evaluation framework for TYPESCORE includes a probing instruction dataset (TYPEINST) of
118 text-embedded image generation instructions with diverse requirements of styles, text formatting,
and length. To meta-evaluate different variants of TYPESCORE and compare TYPESCORE with
CLIPScore, we crowd-sourced annotations of human preferences on text fidelity, style fidelity and
overall preference, over 590 pairs of generated images, and score each metric according to their
alignment with the human preferences. The resulting TYPESCORE is an ensemble score over multiple
dissimilarity metrics, and it aligns significantly better with human preference than CLIPScore.

We show that TYPESCORE has the sensitivity required to differentiate between the embedded-text
fidelity of several state-of-the-art image generation models while CLIPScore is unable to detect these
subtle differences. Interestingly, we found that models with higher TYPESCORE were also ranked
higher in our annotated preferences for style-following and general instruction-following, indicating
this metric can extrapolate to serve as a proxy for the model’s general “instruction-following” ability.
We further discuss the impact of text extraction models, instruction length, and re-captioning on the
sensitivity of TYPESCORE.
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While our work focuses on text fidelity evaluation in text-to-image generative models, we argue
that generating faithful embedded text is actually a cutting-edge challenge that probes the most
sophisticated capabilities of image generation models, thus it can potentially serve as a broader
indicator of a model’s fine-grained control and instruction-following abilities, as evidenced by the
correlation between text fidelity scores and overall model performance in our evaluations.

Specifically, our key contributions are:

1. We introduce a new metric for evaluating image generation quality for rendering embedded
text, highlighting the blind spots of CLIPScore. Our metric demonstrates higher sensitivity
compared to existing metrics like CLIPScore for high-quality image generation models.

2. We provide an evaluation framework, including an instruction dataset TYPEINST with
detailed and diverse image style descriptions and quoted text.

3. We perform large-scale human evaluation to quantitatively meta-evaluate the proposed
metrics.

4. We provide insights into the current capabilities of image generation models and their
progress towards achieving human-like proficiency in generating images with embedded
text.

5. We conduct thorough ablation studies and analyses to understand the effects of text length,
the use of different visual-language-models (VLMs) for captioning, and the impact of
re-captioning.

2 Related Work

Image Generation with Embeded Text Advances in image generation models have significantly
improved the quality of synthetic images. Models such as DALL-E 3 [Ramesh et al., 2021], Stable
Diffusion 3 [Rombach et al., 2022], ideogram [Liu et al., 2023], and MidJourney [MidJourney,
2022] have shown remarkable progress in producing diverse and high-quality visuals. Despite their
success and rapid improvement, these models still encounter challenges in generating text with high
fidelity, often producing text with typos, repeated or missing characters, and extraneous glyphs. Many
methods have been proposed to improve the fidelity of embedded text in the generation. TextDiffuser
[Chen et al., 2023b] addresses these issues by using a two-stage process: first, a Transformer model
generates the layout of keywords from text prompts, and then diffusion models generate images
conditioned on these layouts. TextDiffuser-2 [Chen et al., 2023c] further enhances text rendering
by integrating large language models for layout planning and text encoding, enabling more flexible
and diverse text generation. AnyText [Tuo et al., 2023] takes a different approach by focusing on
multilingual visual text generation and editing, leveraging a diffusion pipeline to first mask the
image and then employ an Optical Character Recognition (OCR) model to encode stroke data as
embeddings to generate texts that can integrate with the background. However, these models typically
involve multiple components, and generating text with both high fidelity and aesthetic and natural
style remains challenging, as high-fidelity text generation frequently sacrifices rendering quality and
artistic value.

Text Fidelity Evaluation Metrics and Datasets Traditional text fidelity metrics such as CIDEr
[Vedantam et al., 2015], SPICE [Anderson et al., 2016], and BLEU [Papineni et al., 2002a] have been
widely used for evaluating image captions. CIDEr focuses on consensus in large datasets, SPICE uses
scene graph structures for more detailed semantic evaluation, and BLEU measures n-gram precision
against reference texts. While these metrics have been foundational, they sometimes fall short in
capturing the holistic meaning. Our approach is based on these standard word-overlapping-based
methods. Wang et al. [2021] introduced the FAIEr metric, designed to assess both the fidelity
and adequacy of image captions. FAIEr employs a visual scene graph to bridge the image and
text modalities, leveraging it as a criterion for fidelity evaluation and guiding adequacy assessment
through reference captions.

When testing the instruction-following ability of image generation models, existing text-image align-
ment metrics like CLIPScore [Hessel et al., 2021] evaluate images by computing the cosine similarity
between image and text embeddings of the instruction. Xu et al. [2023] introduced “ImageReward,”
a model designed to learn and evaluate human preferences for text-to-image generation, aiming to
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improve the alignment of generated images with human aesthetic and contextual preferences through
systematic annotation and reward feedback mechanisms. Lee et al. [2024] proposes a comprehensive
evaluation framework for assessing text-to-image models, addressing the limitations of existing
metrics that focus narrowly on specific aspects. The framework integrates multiple dimensions,
including fidelity, diversity, relevance, and creativity, to provide a more balanced assessment. The
authors introduce a new benchmark combining automatic metrics and human evaluations to improve
understanding and performance of these models. Somepalli et al. [2024] focuses on evaluating and
understanding the stylistic attributes of images generated by diffusion models, and the proposed
model demonstrates superior performance in style retrieval tasks compared to previous methods. Our
approach differs from them as we focus on testing the fidelity of the embeded text in the generated
image. TextDiffuser [Chen et al., 2023b] also introduces the MARIO-10M dataset and MARIO-Eval
benchmark to enhance and evaluate text rendering quality. They evaluate the generation by using
OCR to extract the text. Our work extensively evaluates different options for text description models
and shows that OCR can yield suboptimal extraction results when the generated image is stylish.

3 Text Fidelity Assessment

Given the image generation instructions t ∼ T , let’s assume an image generation model pθ produces
a corresponding image i ∼ pθ(·|t). A model exhibiting good instruction-following ability would
create an image i that: 1) conforms with all the information provided in the instruction t, and 2)
refrains from generating extraneous elements beyond the given instruction. Therefore, assessing the
instruction-following capability of an image generation model can be perceived as evaluating the
mutual information MI(i, t) of the joint distribution, which is defined as

MIθ(i, t) = Et∼T ,i∼pθ(·|t) log
p(i, t)

p(i)p(t)
(1)

However, directly evaluating the instruction-following capability would be challenging as there are
numerous ways to describe an image. To probe the general instruction-following capability of an
image generation model, we study a more controlled problem of the embedded-text fidelity assessment
task, which evaluates how faithful an image generation model follows the instruction to render a
specific piece of text in a certain style. As the evaluation focuses on the embedded-text fidelity, this
yields a clear evaluation metric.

Consider a dataset D containing N image generation instructions, where each instruction includes a
quoted text t. Each image generation model is tasked with generating an set of images {i1, · · · , iN},
based on the instructions. We investigate the following: how accurately are the rendered text in the
images compared to the quoted text t from the instruction?

3.1 TYPESCORE: A Text Fidelity Evaluation Framework for Image Generation Models

Suppose we have a reverse model qϕ that can predict the instruction t from the image i, from (1) (see
Appendix A for proof),

MIθ(i, t) ≥ Et∼T Ei∼pθ(·|t) log qϕ(t|i) ≜ LMI(θ;ϕ). (2)

This suggests that instead of directly estimating MI, we can potentially use an image description
model qϕ to calculate a lower bound proxy LMI(θ;ϕ) of MI. Due to the rapid advancement of
Vision-Language Models (VLMs), obtaining this qϕ becomes more convenient and qϕ can be good off-
the-shelf zero-shot posterior approximators in this context. To evaluate the image generation model’s
capability in generating accurate text based on instructions, we introduce an evaluation framework
that leverages an image description model qϕ. Practically, we can ask qϕ to either calculate the
likelihood of t, or to generate an estimate t̂, using a similarity measure S(t, t̂) as the metric when qϕ
does not produce a likelihood.

In the following, we discuss our evaluation framework, which consists of a dataset of diverse
instructions, an image description model to extract text from the images, and an ensemble score to
measure the difference between the extracted text and the original quoted text.
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3.2 TYPEINST Dataset

We create the dataset of text instructions, TYPEINST, using GPT-3.5 [Brown et al., 2020] by prompting
the model with basic text and style elements written by the authors. Following the Magic Prompt
approach in ideogram [Ideogram AI, 2023], the GPT-3.5 model was prompted to enhance and
recaption the initial raw descriptions in three iterations, resulting in rich instructions that offer
comprehensive details about both the image and the text style. The text to be rendered is in between
quotes. See Figure 2 for sampled generations using the instructions from TYPEINST.

Figure 2: Sampled generations of ideogram using the instructions from TYPEINST.

TYPEINST dataset comprises 118 instructions across various scenarios for evaluation. The aver-
age number of words per instruction is 33.94, while the average number of words in the quote is
11.78. TYPEINST covers a broad range of domains and subjects (see Appendix B for the composi-
tion of TYPEINST) such as celebratory milestones, futuristic adventures, urban life, cozy settings,
inspirational messages, historical themes, cultural celebrations, natural landscapes, educational envi-
ronments, and artistic expressions. It also includes practical text instances beyond English characters,
like addresses, digits, acronyms, and logos. This variety encompasses different styles, fonts, and
contexts, providing a comprehensive resource for evaluation.

3.3 Image Description Methods

With the generated images from each tested model, we employ an image description model qϕ to
extract the rendered text from these images. We compared the performance of two different classes of
image captioning models to extract captions: OCR [Jana et al., 2014], and Vision-language Models
(VLMs). The VLMs were instructed to extract only the rendered text while preserving any typos
or errors. We also ask the model to use “@” tokens to represent any glyphs or extraneous symbols
that cannot be reasonably interpreted to match any English character (Figure 1). The full prompt is
provided in below:

Identify the main text contained in this image, and output it between quotes, without correct-
ing any typos or issues you may encounter. Do not output anything else.

To compare these models, we ask human annotators to extract the rendered text from 590 generated
images (see Appendix D for details and the screenshot of the annotation interface). Using this
human extraction as ground truth t̂oracle, we can compute the extraction accuracy using Normalized
Edit distance (NED) [Yujian and Bo, 2007] for each of the qϕ. Note that as some of the qϕ tend
to auto-correct the extracted text, the similarity score between original text t and the extracted text
t̂ ∼ qϕ(·|i) can be even higher than the similarity between t and t̂oracle. Therefore, the automatic
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score of similarity cannot be used to judge on which qϕ is more accurate. The comparison of the qϕ
is provided in Table 1.

Models NED(t̂oracle, t̂qϕ ) (↓)

OCR 0.650 ±0.032
LLaVa-NeXT 0.618 ±0.023
GPT-4v 0.340 ±0.029
OCR + GPT-4o 0.355 ±0.033
GPT-4o 0.315 ±0.030

Table 1: The Normalized Edit Distance between
human oracle extraction and each qϕ’s extraction.
GPT-4o yields the highest alignment with human
oracle extraction.

We observed that OCR underestimates the TYPE-
SCORE by failing to identify the main text and in-
troducing extraneous characters and symbols from
glyphs. Conversely, VLMs tend to overestimate
TYPESCORE by fixing typos and incorrect word
ordering 3. However, with a careful prompt tuning,
this overestimation issue can be alleviated. In prac-
tice, we used GPT-4o [OpenAI, 2024] as in our
experiments it leads to the best extraction accuracy
comparing to other alternatives, including OCR,
GPT-4v and LLaVa-NeXT [Liu et al., 2024]. We
combined OCR and GPT-4o (OCR+GPT-4o) by
feeding the OCR output into GPT-4o and prompt-
ing the model to discern which portions of the
OCR output were extraneous to the main text, thereby preserving the original typos from OCR while
utilizing GPT-4o’s strength in accurately identifying the main text. Combining OCR and GPT-4o
fails to outperform GPT-4o. The prompt used to refine the OCR output with GPT-4o is provided in
Appendix C.1.

Generated image  𝑖 Extracted text  𝑡̂

“witness 
magic 

understars 
celebrate life.”

“pirbtica bycadic 
ondite a antial 

erard coloreintbot 
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too dit dance ia 
new ra ecitrio nt 

GPT-4o
OCR

“witnes magic 
ithe under 

stars celbrate 
life”

Human 
extraction

Figure 3: When extracting text, OCR tends to introduce errors, while VLMs tend to autocorrect
existing errors in the rendered text.

3.4 Scoring Mechanism

Image generation models may struggle to accurately render text due to various factors, such as typos
(missing, repeated, or unnecessary characters), errors in word order or repetition, and even generating
unintelligible text or no text at all. Given the extracted text t̂, we explored a set of dissimilarity
metrics that cover different error factors.

• Normalized Edit Distance [Yujian and Bo, 2007] measures the ratio of edit distance to
the average of the length of both strings, providing a normalized measure of dissimilarity
between two strings. These metrics were chosen for their effectiveness in quantifying
deviations at the character level, enabling the identification of typographical anomalies such
as misspellings, character omissions, and insertions.

• BLEU [Papineni et al., 2002b] evaluates the precision of machine-generated translations
by comparing them to a reference translation based on exact word matches. BLEU-1 was
selected to evaluate fidelity at the word level, enabling the detection of discrepancies in
word choice, repetition, and omission.

• Character-BLEU evaluates the precision of machine-generated translations by comparing
them to a reference translation based on exact character matches, rather than entire words.

• Normalized Longest Common Subsequence (NLCS) [Ullman et al., 1976] measures the
length of the longest common subsequence between two strings, normalized by dividing
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by the length of the longer string, providing a similarity measure between the two strings.
These metrics were selected to assess text completeness by quantifying the extent to which
the generated text aligns with the original text, thereby providing insights into both word
order fidelity and text integrity.

• Smith Waterman [Smith and Waterman, 1981] is a local sequence alignment algorithm
used to identify the optimal local alignment between two sequences by scoring matches,
mismatches, and gaps.

• Ensemble Score comprises a subset of the aforementioned distance metrics.

Alternatively, we could compute the likelihood qϕ(t|i) for the original quote t. Directly calculating
such likelihood by extracting all logits from the GPT-4 API is challenging because the API does not
natively support log probability evaluation of input tokens. It only supports log probability evaluations
for up to the top 20 generated tokens, making it difficult to compute likelihoods in a reasonable and
reliable manner.

3.5 Evaluated Baseline Models

We evaluated four image generation models that showcase the SOTA text rendering capabilities of
current VLMs: DALL-E 3 [Ramesh et al., 2021], Stable Diffusion XL [Podell et al., 2023], Stable
Diffusion 3 [Stability.ai, 2024], and ideogram [Ideogram AI, 2023]. These models were used only for
inference in their default configurations to generate images according to the given instructions. We
use 8x Nvidia A100 GPUs for all the experiments.

4 Meta-evaluation of the TYPESCORE Variants

Human annotation To meta-evaluate different variants of TYPESCORE and compare our method
with CLIPScore, we further performed pairwise human evaluation task on 472 pairs of images
generations from DALL-E 3, ideogram, Stable Diffusion and Stable Diffusion 3 on our internal
crowd-source annotation platform. Each pair of generated images was evaluated by 3 to 5 judges,
presented in random order with in-context examples and detailed instructions of the requirements and
evaluation aspects. We aimed for at least 60% agreement: if 2 out of 3 judges concurred on a top
answer, the evaluation concluded. Otherwise, up to 2 additional judges were consulted to achieve the
desired agreement. The judges were instructed to assess on three tasks using a 3-point Likert-like
scale:

1. Text fidelity: In which image does content of the rendered text better align with the original
quote?

2. Style fidelity: In which image does the style better align with the style description in the
instruction?

3. Overall preference: Considering the content of the rendered text, alignment with the
instruction and aesthetic value, which image better aligns with the given instruction?

Further details, including the human evaluation template used, hourly rate of the evaluation task, and
inter-rater agreement analysis, are provided in Appendix D.

Results Based on the Text fidelity annotation, we compare different variants of TYPESCORE via
the meta-metrics of alignment accuracy, which is computed as

Alignment Accuracy =
|(TYPESCORE(θ) > TYPESCORE(θ′)) ∩ Human prefer θ over θ′|

|All annotated pairs|
,

where | · | denotes the cardinality. The alignment accuracy indicates the percentage of pairs where
automatic metrics and human preferences agree. Tied pairs are excluded from the calculation. This
metric is linked to Percent Rank Violation (PRV) [Li et al., 2024], which evaluates the ranking viola-
tion of the metrics against the oracle preference. In this way, we calculate the ranking violation of the
metrics for each pair of models using human-annotated data, then compute the aggregated means. The
results are presented in Table 2. We found that TYPESCORE (character-BLEU), TYPESCORE (Smith
Waterman) and TYPESCORE (NED) generally exhibit better alignment with human judgement of text
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fidelity, style fidelity and overall preference compared to other distance metrics. After normalizing
each distance metric to [0, 1], combining NED, Smith-Waterman and NLCS through mean pooling ef-
fectively leverages their strengths, resulting in robust, generalizable and high alignment accuracy. We
refer to the resulting ensemble methods as TYPESCORE in the subsequent discussion. TYPESCORE
consistently outperforms CLIPScore in this meta-evaluation. Further examples are provided in the
Appendix F, illustrating how TYPESCORE can discern subtle differences in rendered text. We also
noted that in cases where there is a significant quality gap between pairs, both CLIPScore and TYPE-
SCORE can accurately detect the difference. Yet, when the quality gap is narrower (e.g., DALL-E vs
Ideogram), CLIPScore consistently struggles to rank them correctly, whereas TYPESCORE remains
sensitive.

Alignment Accuracy Text Fidelity(↑) Style Fidelity(↑) Overall Prefer.(↑)

CLIPScore [Hessel et al., 2021] 66.3%± 0.6% 58.3%± 0.9% 65.8%± 0.7%

TYPESCORE (NED) 69.0%± 0.5% 61.7%± 0.5% 68.6%± 0.3%
TYPESCORE (BLEU) 69.3%± 0.4% 60.6%± 0.9% 69.2%± 0.5%
TYPESCORE (character-BLEU) 71.5%± 0.8% 62.0%± 0.5% 71.1%± 0.7%
TYPESCORE (NLCS) 67.8%± 0.6% 59.3%± 0.9% 67.7%± 0.8%
TYPESCORE (Smith Waterman) 69.3%± 0.5% 63.9%± 0.7% 69.2%± 0.4%

TYPESCORE (Ensemble Score) 71.1%± 0.5% 62.2%± 0.7% 71.3%± 0.3%

Table 2: Alignment Accuracy of CLIPScore and TYPESCORE variants based on human preference,
w.r.t text fidelity, style fidelity and overall preference. GPT-4o is used for the text extraction.
TYPESCORE aligns better with human preference of text fidelity, style fidelity and overall preference.
Averaging the three columns, TYPESCORE (Ensemble Score) yields the robust and highest alignment
accuracy.

Extrapolation property of TYPESCORE Interestingly, as shown in Table 2, our approach also
demonstrates good alignment with Style fidelity and Overall preference, while CLIPScore falls short.
This suggests that text fidelity can be closely associated with the evaluation of general instruction-
following ability of an image generation model. Therefore, we can use TYPESCORE to probe the
image generation model’s capability to follow instructions, particularly if they are not specifically
tailored to optimize rendered text fidelity.

TYPESCORE sensitivity to Text Length We found that TYPESCORE is robust to variations in
input text length, yielding consistent performance regardless of the length of the instruction or quoted
text. We validated this robustness by computing the Pearson correlation [Pearson, 1895, Stigler,
1989] between TYPESCORE and varying input text lengths, and found no significant correlation
across several image generation models. This indicates that the TYPESCORE is stable and reliable
across texts of varying lengths. See Appendix E.1 for more details.

TYPESCORE sensitivity to Recaptioning We found that recaptioning the input image description
by adding more stylistic details and contextual information helps control the text fidelity evaluation of
the rendered text. This improvement is reflected in higher TYPESCORE and slightly lower variance,
demonstrating that incorporating richer stylistic nuances contributes to a more controlled setting
for text fidelity evaluation. We measured this by prompting ideogram to generate images using an
augmented input caption and comparing the scores of the resulting images. See Appendix E.2 for
more details.

TYPESCORE sensitivity to Text Extraction Method We conducted a comprehensive analysis
to evaluate TYPESCORE’s robustness across different text extraction methods. While our primary
quantitative analyses utilize GPT-4o due to its highest alignment with human extractions, we found
that TYPESCORE maintains consistent performance across different text extraction approaches.
To demonstrate this, we evaluated the alignment accuracy using LLaVA-NEXT, a more efficient
alternative to GPT-4o. Despite LLaVA-NEXT showing lower alignment with human oracle extractions
(0.618 mean normalized edit distance) compared to GPT-4o, TYPESCORE consistently outperforms
CLIPScore in aligning with human preferences across all evaluation aspects (Table 3).
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Alignment Accuracy (LLaVA): Text Fidelity(↑) Style Fidelity(↑) Overall Prefer.(↑)

CLIPScore 38.4%± 0.8% 36.1%± 0.5% 38.0%± 0.5%

TYPESCORE (NED) 39.9%± 0.4% 37.1%± 0.9% 39.9%± 0.7%
TYPESCORE (BLEU) 38.9%± 0.5% 37.7%± 0.6% 38.9%± 0.5%
TYPESCORE (character-BLEU) 40.2%± 0.6% 37.5%± 0.9% 40.2%± 0.5%
TYPESCORE (NLCS) 38.9%± 0.3% 36.5%± 0.8% 38.7%± 0.6%
TYPESCORE (Smith Waterman) 39.9%± 0.4% 37.7%± 0.7% 40.0%± 0.7%

TYPESCORE (Ensemble Score) 39.0%± 0.4% 37.0%± 0.7% 39.3%± 0.6%

Table 3: Alignment accuracy using LLaVA-NEXT as the text extraction model. Despite using a less
accurate text extraction model, TYPESCORE maintains better alignment with human preferences
compared to CLIPScore across all evaluation aspects.

This robustness can be attributed to the fact that a weaker text extraction model tends to introduce
similar levels of errors across all generated images being compared, thus not significantly affecting
their relative rankings in the evaluation. This flexibility allows users to employ any state-of-the-art
text extraction model based on their specific requirements and constraints, while maintaining reliable
evaluation results.

5 Evaluation of Image Generation Models using TYPESCORE

Tested Model TYPESCORE(↑) Style Fidelity(↑) Overall Preference(↑)

Stable Diffusion XL 0.238 ±0.013 0.25 0.02
DALL-E 3 0.739 ±0.018 0.87 0.54
Stable Diffusion 3 0.800 ±0.016 0.73 0.17
ideogram 0.882 ±0.009 0.87 0.70

Table 4: Evaluation of several image generation models using TYPESCORE. Ideogram outperforms
the others models under TYPESCORE. It also garners the top human rating for style fidelity and
overall preference.

We assess the image generation models mentioned in section 3.5 using TYPESCORE. The results are
presented in Table 4. Our evaluation indicates that ideogram attained the highest TYPESCORE, with
stable diffusion 3 coming in second. Despite DALL-E 3’s capability to generate high-quality images,
it falls short in accurately rendering the text accurately.

6 Limitations

Despite the promising results of TYPESCORE in evaluating text fidelity in synthetic images, several
limitations must be acknowledged. First, the reliance on existing VLMs for text extraction introduces
dependency on their performance and limitations. In scenarios where the VLMs themselves exhibit
biases or inaccuracies, these will propagate into our evaluation, potentially skewing TYPESCORE
results. Moreover, the diverse nature of text styles and formats in TYPEINST may not comprehensively
cover all real-world use cases. Our metric is evaluated on Latin text and should benefit from being
evaluated with non-Latin text as well. Lastly, our human evaluation process, although extensive, is
subject to individual annotator biases and interpretations. While we have taken measures to ensure
consistency and reliability, human evaluations inherently carry a degree of subjectivity that can
influence the assessment outcomes.

7 Conclusion

We introduced a comprehensive evaluation framework, TYPESCORE, designed to assess the fidelity
of text embedded in synthetic images generated by various models. Our framework evaluates the
degree to which the generated images accurately follow textual instructions, leveraging a combination
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of automatic metrics based on human judgment. By comparing the performance of our metrics with
human preferences, we demonstrated that TYPESCORE aligns more closely with human judgment
compared to traditional metrics like CLIPScore, indicating its efficacy for evaluating text fidelity
in image generation models. In future work, we aim to explore the possibility of extending our
approach to evaluate image generation in general domains beyond text rendering. We also plan to
assess whether calculating the likelihood qϕ(t|i) could provide a more precise evaluation of text
fidelity compared to the dissimilarity metrics we used in TYPESCORE.
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Appendix

A Proof of (1)

MIθ(i, t) = Et∼T ,i∼pθ(·|t) log
p(i, t)

p(i)p(t)

= H(t) + EiDKL(pθ(t|i), qϕ(t|i)) + Et∼T ,i∼pθ(·|t) log qϕ(t|i)
≥ Et∼T Ei∼pθ(·|t) log qϕ(t|i) ≜ LMI(θ;ϕ).

where H(·) represents the entropy. DKL denotes the KL divergence between two distributions.

B Dataset composition

We provide the dataset composition of TYPEINST below. TYPESCORE covers a variety of scenarios
that instruct the image generation model to render text.

Figure 4: Composition of TYPEINST dataset.
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C Image description methods

C.1 OCR+GPT-4o prompt

When combining OCR+GPT-4o, we used the prompt below to generate a response. In the prompt.
{ocr_extracted_caption} refers to the caption extracted by OCR.

This image contains a main quote and it might contain additional text. We already
extracted both the main quote and any additional text from the image, and it follows:
{ocr_extracted_caption}. We want to isolate only the main quote. From this text, identify the
main quote and extract it in the right order, without correcting any typos or issues you may
encounter, and without adding any new words. Output the main quote between quotes and
do not output anything else.

C.2 GPT-4o versus LLaVa

We assess the image generation models mentioned in section 3.5 using TYPESCORE with LLaVA-
NeXT. The results are presented in Table 5. As an open-source model, LLaVa offers lower costs
compared to GPT-4o, making it a cost-effective alternative for TYPESCORE.

Tested Model TYPESCORE (GPT-4o) TYPESCORE (LLaVa)
Stable Diffusion XL 0.238 ±0.013 0.357 ±0.088
DALL-E 3 0.739 ±0.018 0.746 ±0.018
Stable Diffusion 3 0.800 ±0.016 0.816 ±0.017
ideogram 0.882 ±0.009 0.855 ±0.013

Table 5: Evaluation of several image generation models using TYPESCORE with LLaVa. Similarly to
TYPESCORE with GPT-4o, ideogram outperforms the other models under TYPESCORE with LLaVa.

D Human evaluation details

In total, we recruited 104 human annotators to participate in the study using our internal crowd-source
annotation platform. Annotators were recruited from Canada, Great Britain, the United States,
Australia, Singapore and India and paid an average of $76.28 USD per hour.

To ensure the quality of the annotation data, we qualified each rater by assigning a set of test questions
for which the answers were known. In order to be qualified to annotate the study, raters were required
to correctly answer at least 90% of the test set questions. Additionally, we manually inspected the
annotations to validate the human ratings. We found that the inter-rater agreement was high, with
only 4.87% of the tasks requiring two additional judges to reach an agreement.

We show the UI for the annotation task in Figures 5 and 6: Figure 5 shows the UI for the tutorial that
was provided to each annotator, and Figure 6 shows the task UI.

D.1 Tutorial UI
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Figure 5: The tutorial UI is split into 3 sections, corresponding to the sections of the annotation task:
text fidelity, style fidelity, and overall preference. Each section contains example image pairs that
demonstrate potential issues annotators might encounter, along with the correct answers for each
scenario.
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D.2 Annotation Task UI

Figure 6: Annotation task UI. Users we provided with an image description and a pair of images, and
asked to rate the images with respect to their text fidelity, style fidelity, and overall preference.
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E TYPESCORE Sensitivities

E.1 Sensitivity to the length of the instruction

Table 6 shows the Pearson correlation coefficients between different variants of TYPESCORE and
overall input caption lengths across different image generation models. This suggests that TYPE-
SCORE exhibits minimal correlation with caption length for each model, indicating it yields stable
score across various lengths of the input text.

TYPESCORE variants: SD XL DALL-E 3 SD 3 ideogram

TYPESCORE (NED) 0.00 0.01 0.00 0.00
TYPESCORE (BLEU) 0.06 0.03 0.12 0.04
TYPESCORE (character-BLEU) 0.03 0.04 0.02 0.07
TYPESCORE (NLCS) 0.04 0.04 0.02 0.05
TYPESCORE (Smith Waterman) 0.10 0.02 0.03 0.03
TYPESCORE (Ensemble Score) 0.03 0.01 0.02 0.02

Table 6: Pearson correlation coefficients between TYPESCORE and different input caption lengths.
SD denotes Stable Diffusion. The results show no significant correlation across various image
generation models, demonstrating that TYPESCORE remains stable across various text lengths.

E.2 Sensitivity to text recaptioning

We found that augmenting the input instruction with more detailed stylistic details and contextual
information helps control the text fidelity evaluation of the rendered text. The results are shown in
Table 7. We assessed this by comparing the quantitative results of ideogram and ideogram Magic
Prompt E.2. The ideogram Magic Prompt model is an extension of the default ideogram model,
where an augmented image instruction is suggested and used to generate the image 7.

It can be observed that TYPESCORE has a higher mean value and slightly lower variance, demonstrat-
ing that incorporating richer stylistic nuances contributes to a more controlled setting for text fidelity
evaluation.

TYPESCORE variants: ideogram ideogram Magic Prompt

TYPESCORE (NED) (↓) 0.138 ±0.013 0.124 ±0.014
TYPESCORE (BLEU) (↑) 0.691 ±0.018 0.772 ±0.015
TYPESCORE (character-BLEU) (↑) 0.878 ±0.010 0.912 ±0.009
TYPESCORE (NLCS) (↑) 0.924 ±0.006 0.936 ±0.006
TYPESCORE (Smith Waterman) (↑) 0.899 ±0.009 0.909 ±0.009
TYPESCORE (Ensemble Score) (↑) 0.882 ±0.009 0.895 ±0.009

Table 7: ideogram with recaptioning consistently outperforms ideogram with standard prompts.

F Comparative qualitative analysis via example generations

In the following sections, we present example generations from each image generation model. Each
model’s outputs are divided into two columns: left and right. The left column showcases the most
faithful generations from the model, while the right column displays examples with the lowest text
fidelity. These low-fidelity examples often feature numerous typos, repeated words and characters,
illegible glyphs, or a complete absence of text. These comparisons help elucidate the differences in
text fidelity among the models.
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Generated image  !Instruction  "

A powerful and inspiring gym wall, covered 
in large, block letters in a bold font, with the 
motivational message "Sweat, struggle, 
and succeed—where strength is built." 
The text leans slightly upward, creating a 
sense of momentum and determination. 

The background features gym equipment 
like dumbbells, barbells, and kettlebells, 

while the floor is lined with exercise mats. 
The atmosphere is charged with energy 

and focused intensity, as if the wall itself is 
cheering on each gym-goer to reach their 

full potential.

A motivational message on a gym wall 
features large, block letters in a bold font, 

urging visitors: “Sweat, struggle, and 
succeed—where strength is built.” The 

text leans slightly upward, conveying a 
sense of momentum and determination, 

encouraging active engagement.

Ideogram

Ideogram 
Magic 

Prompt

Figure 7: The ideogram Magic Prompt model augments the contextual information of the input
instruction, adding more stylistic details. We found that this helps control the text fidelity evaluation
of the rendered text.
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F.1 Stable Diffusion XL

Table 8: Stable Diffusion XL example generations. On the left, see some generations with higher text
fidelity. On the right, see some generations with lower text fidelity.
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F.2 DALLE 3

Table 9: DALLE-3 example generations. On the left, see some generations with higher text fidelity.
On the right, see some generations with lower text fidelity.
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F.3 Stable Diffusion 3

Table 10: Stable Diffusion 3 example generations. On the left, see some generations with higher text
fidelity. On the right, see some generations with lower text fidelity.
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F.4 ideogram

Table 11: ideogram example generations. On the left, see some generations with higher text fidelity.
On the right, see some generations with lower text fidelity.
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