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Figure 1. Efficient NeRF editing within 2 minutes. We present a framework that aims to enhance the efficiency of editing NeRF models
using text-based instructions. The key factor contributing to this efficiency is our regularized diffusion scheme, which enables the direct
generation of multiview-consistent images. (Prompt: “Turn the bear into a grizzly bear”.)

Abstract

The advancement of text-driven 3D content editing has
been blessed by the progress from 2D generative diffu-
sion models. However, a major obstacle hindering the
widespread adoption of 3D content editing is its time-
intensive processing. This challenge arises from the iter-
ative and refining steps required to achieve consistent 3D
outputs from 2D image-based generative models. Recent
state-of-the-art methods typically require optimization time
ranging from tens of minutes to several hours to edit a
3D scene using a single GPU. In this work, we propose
that by incorporating correspondence regularization into
diffusion models, the process of 3D editing can be signif-
icantly accelerated. This approach is inspired by the no-
tion that the estimated samples during diffusion should be
multiview-consistent during the diffusion generation pro-
cess. By leveraging this multiview consistency, we can edit
3D content at a much faster speed. In most scenarios,
our proposed technique brings a 10× speed-up compared
to the baseline method and completes the editing of a 3D
scene in 2 minutes with comparable quality. Project page:
https://lsongx.github.io/projects/en2n.html.

1. Introduction
The recent accomplishments in foundational 2D editing
methods [3, 6, 56] have enabled us to personalize and mod-
ify 3D captured scenes [22], which hold great appeal and
significant practical value. However, despite the impressive
results obtained through these recent developments, the ex-
isting 3D editing methods [22, 59, 79] still suffer from the
drawback of prolonged optimization duration, which often
takes tens of minutes.

Achieving efficient 3D editing using text-driven 2D im-
age editors presents a challenging task. This difficulty pri-
marily arises from the fact that text-driven image editors
typically operate on a per-image basis. Consequently, ap-
plying these editors to multiview images often results in in-
effective correspondence among views, hence the edited 2D
images cannot be directly leveraged for updating 3D con-
tent. Although significant advancements have been made
in enhancing multiview correspondence, such as score-
distillation sampling [50], existing approaches frequently
necessitate retraining and backpropagation, thereby making
multiview editing inefficient.

This paper proposes an approach wherein we apply reg-
ularization to the diffusion denoising process to enhance
its multiview correspondence. Performing direct edits on
a collection of multi-view images leads to efficient 3D edit-
ing capabilities compared to existing works like Instruct-
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Figure 2. Comparison of editing frameworks. Our approach
significantly enhances the speed of the editing process by directly
updating the NeRF using edited multiview images. In contrast, the
SoTA method, Instruct-NeRF2NeRF, needs to iteratively edit and
re-render images.

NeRF2NeRF [22] (see Fig. 2). This is because the iterative
updating framework [22] can now be simplified by treating
the process as a text-driven editing of 2D images and then
updating the 3D representation.

Our key insight is that in 3D editing, where multiple-
view images serve as inputs, we benefit from the observa-
tions of the existing correspondences between these images.
If we can progressively rectify the inconsistencies observed
across multiple views during the diffusion sampling pro-
cess, we can effectively generate a collection of images that
exhibit strong multiview consistency and subsequently up-
date the 3D contents in a much more efficient way. Note
that the idea of multiview consistency is also used in 3D
generation tasks like text-to-3D [50] or image-to-3D [86]
where correspondence needs to be generated.

However, ensuring consistent prediction across various
perspectives is a challenging problem due to two reasons.
Firstly, the color of a 3D point may vary depending on the
viewing angle. Consequently, naively imposing identical
estimations leads to unrealistic outcomes. Secondly, preva-
lent 2d diffusion models denoise in the latent space, where
each latent vector represents an image patch. However, such
latent representation cannot best capture the variations of
image patches across different viewpoints.

We address the aforementioned challenges through a
two-fold approach: mitigating the impact of regularization
for diffusion and minimizing the influence of inconsistent

edits for training radiance fields. To tackle the regular-
ization issue, we draw inspiration from recent studies that
reveal how the diffusion process prioritizes overall image
structure in the early denoising stages while focusing on
texture details in the later stages [45]. Based on this insight,
we propose a regularization strategy that places more em-
phasis on reducing inconsistency during the early steps of
diffusion, and gradually removes the regularization towards
the later steps. By softening the regularization, we can gen-
erate visually appealing images. However, the generated
images may still not strictly consistent across multiviews.
To overcome this, we adopt a loss function that encourages
the 3D content optimization process to align the style of
image patches using the Gram matrix [19] and randomly
switch between the photometric loss and the style loss. In
our method, this loss function guides the edited 3D to min-
imize the impact of multiview inconsistency outputs, such
as shifts or deformations. To sum up, our contributions are
as follows:
• This paper proposes a text-driven 3D content editing

framework, utilizing the power of 2D image editing
techniques. This framework grants users the ability to
efficiently edit 3D content, 10 times faster than cur-
rent radiance field editing techniques such as Instruct-
NeRF2NeRF [22], which may require approximately 20
minutes.

• This paper develops a regularization technique to pre-
serve the multiview correspondence across a collection
of images, eliminating the requirements for retraining the
diffusion network. Moreover, to mitigate the impact of in-
consistent generation on the tuning of the radiance field,
we propose the incorporation of a style matching loss.

2. Related Works
Generating 3D Contents with Foundational 2D Genera-
tive Models. 3D editing can be conceptualized as a con-
ditioned generation challenge. In recent years, founda-
tional 2D generative models [3] have showcased remark-
able prowess in open-set generation [55–57]. The utiliza-
tion of these 2D generative foundational models for open-
set 3D content generation has garnered significant atten-
tion. DreamFusion [28, 50] proposed Score Distillation
Sampling (SDS) based on probability density distillation to
get 3D generation priors from 2D generative models. Score
Jacobian Chaining [80] applied chain rule on the learned
gradients and back-propagate the score of a 2D diffusion
model through the Jacobian of a differentiable renderer for
3D content. Given that 2D images are conventionally gen-
erated on a view-by-view basis, the central quandary in this
avenue of research revolves around the identification of a
multifaceted supervisory signal that ensures 3D consistency
from the purview of 2D models, which can be improved in
various aspects such as on the 2D generation conditioning
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[2, 9, 11, 26, 38, 51, 60, 81, 84, 97] and on the underly-
ing 3D representation [13, 37, 61, 73, 76, 91]. Besides pure
text as conditioning, some methods are developed to take a
single image as the input [43, 51, 54, 62, 74, 85, 86]. The
aforementioned methods primarily tackle a common chal-
lenge: the task of updating 3D representations in the pres-
ence of potentially multiview inconsistent images. Within
our approach, we incorporate a style loss component to mit-
igate the issue of multiview inconsistency. This strategy is
employed with the specific aim of facilitating 3D editing,
which diverges notably from the task of generating content
from scratch.

Multiview Consistent Image Generation. Since multi-
view consistency stands as the cornerstone in producing
high-quality 3D content, several methods are dedicated to
refining multiview consistency in the process of 2D image
generation. A prevalent research direction posits the aug-
mentation of 2D image generation models with a height-
ened awareness of the imaging process, such as camera
poses. 3DiM [82] proposed to use camera poses as a con-
ditioning input to the denoising model in diffusion. Zero-
1-to-3 [40] further improved this line of work with founda-
tional 2D generative models and effective advanced multi-
view consistency modeling. One-2-3-45 [39] further accel-
erated the sampling and reconstruction process of Zero-1-
to-3. Instead of modeling the view-conditioned distribution
of images, Viewset Diffusion [71] and SyncDreamer [42]
proposed to model the distribution of multiview images di-
rectly. MVDiffusion [75] and Consistent-1-to-3 [89] used
epipolar geometry based attention across the views to im-
prove multiview consistency, while MVDream [63] demon-
strated the effectiveness of directly using the self-attention
in Stable Diffusion [56]. Our research distinguishes itself
from the methodologies above by focusing on 3D editing,
wherein we presuppose correspondence as an input to the
generative process. In contrast, the previously mentioned
approaches necessitate the generation of correspondence
due to the absence of 3D inputs.

Radiance Fields Editing. Radiance Fields [1] serve as a
means for representing 3D content, and they can be parame-
terized through neural networks [46, 48], multiplane images
[83, 96], point clouds [30, 87], and others [8, 12, 58, 69, 90].
Since a radiance field represents a 3D scene, editing it
can be achieved with human-designed graphics knowl-
edge, such as volume geometry [36, 52, 77, 88, 92–94],
color [20, 32, 33] and lighting [4, 5, 68]. Some works
[14, 16, 24, 27, 49, 95] proposed to stylize a radiance
field with 2D image style adaptors [19, 25], with an em-
phasis on the texture generation and leaving the geometry
untouched. EditNeRF [41] proposed to update the latent
embeddings of NeRF for editing both shape and appear-

ance. ClipNeRF [78], NeRF-Art [79] and Blended-NeRF
[21] adopted CLIP [53] to maximize the similarity between
NeRF and the given text descriptions. DFFs [31] distilled
image feature from DINO [7] and LSeg [34] into radiance
fields and allows direct editing of properties such as shape,
size and color. More closely related to our work, Instruct-
NeRF2NeRF [22] adopted the 2D instruction-based editing
method InstructPix2Pix [6] to update the scene with the It-
erative Dataset Update (Iterative DU) technique. Besides it-
eratively updating the dataset [22, 47, 70], the iterative loss
SDS [50] was adopted by some methods for text-based 3D
editing, such as Vox-E [59], FocalDreamer [35], AvatarStu-
dio [44] and DreamEditor [98]. DN2N [18] accelerates ex-
isting editing methods by training a generalizable NeRF so
that each editing prompt will not require extra training steps
like the above iterative methods. Our editing method em-
ploys a distinct pipeline, which obviates the necessity for
iterative updates to edit 3D scenes, as the proposed regu-
larization ensures the multiview consistency of the edited
images. Notably, our method exhibits a marked efficiency
compared to the aforementioned technique and often fin-
ishes within minutes. Concurrent with our work, Gaussian
splatting representation is adopted to accelerate the radiance
editing [10, 17], and we consider their methods orthogonal
to us since we speed up the editing on the diffusion side.

3. Preliminaries
Diffusion Models. Diffusion models [15, 23, 65, 66] aim
to approximate a given data distribution q(x0) by learning
a model distribution pθ(x0) that is both a good approxima-
tion of q(x0) and allows for efficient sampling. A signifi-
cant contribution in this field is the development of Denois-
ing Diffusion Probabilistic Models (DDPMs [23, 64, 67]),
which belong to latent variable models described by the fol-
lowing form:

pθ(x0) =

∫
pθ(x0:T )dx1:T (1)

where x1, . . . ,xT are latent variables in the
same sample space as x0 (denoted as X ), and
pθ(x0:T ) := pθ(xT )

∏T
t=1 p

(t)
θ (xt−1|xt). In

DDPM [23], we have p(xT ) = N (xT ;0, I) and
pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ

2
t I), where the

trainable component µθ(xt, t) has the time-dependent
constant variance σ2

t . The forward process is then defined
to learn µθ as q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), where

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) with βt as

predefined constants. Next, in DDPM we have

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (2)

where αt and ᾱt are constants derived from βt and ϵθ is a
noise predictor, usually parameterized by neural networks.
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Figure 3. The overall framework of multiview correspondence regularized diffusion. We regularize that the output obtained during
the denoising process of diffusion aligns with the input multiview images in terms of multiview correspondence

Figure 4. Multiview correspondence regularization on the dif-
fusion process. Ia and Ib are input views with correspondence
pair (pa,pb). xt

a and xt
b are the samples at time t as defined in

Eq. (1). “Denoise” step refers to Eq. (2).

In image generation tasks, the generation can be condi-
tioned on inputs like text or reference images, and we have

ϵt = ϵθ(xt, t, c), (3)

where c is the conditioning inputs.

Radiance Fields. 3D contents in radiance fields are repre-
sented by functions that take in spatial location (x, y, z) and
viewing direction (θ, ϕ) and output the radiance and occu-
pancy of that location. The radiance value and occupancy
for all points along a camera ray are considered to render
an image from the radiance fields. Volume rendering [46]
facilitates the generation of radiance fields by accessing and
analyzing all points present on the camera rays. Recent ad-
vancements, such as the utilization of 3D Gaussian points
[30] to parameterize a radiance field, have led to more effi-
cient rendering pipelines. we opt to generalize the rendering
process by symbolically representing it as

I = π(F ,P), (4)

where I is the rendered image, F is the radiance field, and
P is the camera projection matrix (i.e., intrinsics and extrin-
sics).

4. Our Method

The overall framework of our proposed method is straight-
forward. First, we edit multiview images by the provided
textual prompt. Subsequently, we proceed to update the ra-
diance field with these edited images. Our approach dif-
fers from Instruct-NeRF2NeRF in two key respects. Firstly,
while Instruct-NeRF2NeRF performs image editing on one
image at a time, we apply it to a batch of multiview images.
Secondly, we employ a single-pass dataset update scheme,
whereas Instruct-NeRF2NeRF requires iterative updates to
the dataset.

4.1. Multiview Correspondence Regularization

The goal of correspondence regularization is to maintain the
correspondence among the multiview images after editing.
Our method for pursuing this objective is quite clear: we
aim to ensure that the samples x0:T during diffusion are
aligned with the inputs from the multiple views during the
denoising process.

Without loss of generality, let us consider two views, de-
noted as Ia and Ib, and suppose there are K corresponding
points denoted as {(pk

a,p
k
b )}Kk=1. According to the defini-

tion of denoising in equation 3, now the conditioning for
editing the two images becomes ca = {cprompt, Ia} and
cb = {cprompt, Ib}. For time t, we further have the esti-
mated sample xt

a and xt
b based on the conditioning. Our

regularization is based on a distance on the estimated noise
based on the corresponding points in the input, namely cor-
respondence distance, as defined by

d
(
xa,xa; {(pk

a,p
k
b )}Kk=1

)
=

1

K

K∑

k=1

(
xa[p

k
a]− xb[p

k
b ]
)
,

(5)
where xt[pk] means the value of xt on the coordinate pk.
Our regularization can be then formulated as a loss for min-
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(a) Input views

(b) View-by-view editing w/o regularization

(c) With regularization on all denoising steps (i.e. using Eq. (7))

(d) With our softened regularization (Sec. 4.2)

Figure 5. Multiview image editing results of (a) input views:
(b) view-by-view editing baseline without any regularization; (c)
enforcing multiview correspondence on all denoising steps; (c) our
softened correspondence regularization. (Prompt: “Turn him into
Batman”.)

imizing the distance, i.e.,

Lreg(xa,xb) = min
xa,xb

d
(
xa,xa; {(pk

a,p
k
b )}Kk=1

)
. (6)

Incorporating the regularization loss in the retraining of the
diffusion network can indeed be a viable approach. How-
ever, it is worth noting that this method may result in signif-
icant training time requirements, making it less desirable.
Fortunately, there exists a closed-form solution for the reg-
ularization loss, that is,

xt
a[p

k
a] = xt

b[p
k
b ] =

1

2

(
xt
a[p

k
a] + xt

b[p
k
b ]
)
,∀t ∈ [0, T ]

(7)
where xt

a and xt
b are the results with the perfect multiview

correspondence. Eq. (7) can be interpreted that we calculate
the mean value of all correspondence pairs on the outputs
from Eq. (3) and continue diffusion with Eq. (2). However,
directly using Eq. (7) leads to undesired over-blurred image
outputs, as shown in Fig. 5(c).

The occurrence of blurred outcomes can be compre-
hended. This is predominantly due to the presence of

noise in the pairs of multiview correspondences (i.e.,
{(pk

a,p
k
b )}Kk=1). This noise can arise from either imprecise

estimation of correspondences or due to the diffusion back-
bone we have employed, which relies on downsampling in
the latent space. Even if the pixel-level correspondence ap-
pears to be reliable, it does not guarantee accurate corre-
spondence in the latent space. Furthermore, there may exist
instances where strict correspondence is lacking in the la-
tent space. In cases where the correspondence is noisy, the
application of regularization will result in a blurred effect,
as it produces an averaged outcome across different patches.
We propose to soften the regularization in the following sec-
tion to address the undesired blurry outputs.

4.2. Softened Regularization

The cause of the blurred generation can be attributed to an
excessively strong regularization. Thus, it is natural to con-
sider decreasing the strength of regularization in the diffu-
sion process. Our insight is that this reduction in regulariza-
tion should preserve the majority of the semantics without
the necessity of retaining all image details. For example,
if we want to edit human facial images while maintaining
the multiview alignment of the facial structure is essential,
inconsistencies in details such as wrinkles across different
views may not be of significant concern.

Drawing on previous research [45], which suggests that
diffusion models primarily focus on capturing the overall
structure during the initial denoising stages and pay more
attention to finer details in subsequent stages, we propose
to apply Eq. (7) solely to the early steps of the diffusion
process. Formally, we introduce a threshold, denoted as
Tend, which replaces T in Eq. (7). For denoising steps be-
yond Tend, no regularization is employed, and the denoising
steps are carried out as per the standard procedure outlined
in Eq. (3).

In Figure 1, we present the visual representation to
demonstrate the influence of various selections of Tend. The
level of indistinctness grows with the increase in Tend. Em-
pirically, we found that by setting Tend to 10, we achieve
favorable multiview-consistent editings. Consequently, we
have employed this particular value for all of our experi-
ments using the InstructPix2Pix [6].

4.3. Updating Radiance Fields

Style Loss. By utilizing the multiview images obtained by
regularized diffusion in the previous section, the process of
updating the radiance fields becomes straightforward. First,
we follow Instruct-NeRF2NeRF and sample a batch of N
training cameras {Pn}Nn=1. A set of images is first rendered
as in Eq. (4), then we apply multiview correspondence regu-
larized 2D image editing on it. Next, with the same training
cameras {Pn}Nn=1, we randomly render image patches with
these cameras, and sample corresponding patches from the
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Input views Tend = 10 Tend = 20 Tend = 30 Tend = 40 Tend = 50

Figure 6. Impact of the regularization ending step Tend. Moving the regularization to early steps can avoid unwanted blurriness in the
generation. (Prompt: “Turn him into Albert Einstein”, “Turn the tower into Big Ben” and “As a wooden building”.)

generated images in the previous step. Here, we slightly
abuse the notation between images and patches, and denote
the rendered patches as In and the corresponding edited
patches as Igen

n . However, direct training with Igen
n leads to

artifacts, which arise from the presence of inconsistent ar-
eas since the regularization improves consistency but is not
perfect. Therefore, we propose to leverage a loss function
that is less sensitive to multiview inconsistency, and through
empirical analysis, we find that the style loss based on the
Gram matrix [19] is an excellent candidate for this purpose.
The total training loss is then

L =
1

N

N∑

n=1

(
(In − Igen

n )2 + λ(G(In)−G(Igen
n ))2

)
,

(8)
where G(·) is the Gram matrix [29] of the input, and λ is
set to 0.1 in our experiments empirically.

Single-Pass Dataset Update. Instruct-NeRF2NeRF pro-
posed a scheme for updating NeRF named iterative dataset
update, whereby a randomly selected image from the
dataset is edited and subsequently added to the training
views. The updated training views are then used to update
the NeRF model over multiple steps. In their experimental
settings, the NeRF updating step is 10 steps, so the edit-
ing model (Instruct-Pix2Pix) is called every 10 steps with a
randomly sampled image for updating the training dataset.

We adopt a different strategy for updating NeRF. Thanks
to the multiview-consistently edited images, we can directly
edit NeRF with those images without the need for iteratively
updating the dataset. We denote the set for storing the gen-
erated image as Dgen, which is empty at the beginning of
the training. Denote the input views as Dinput = {Iv}, we
randomly sample a batch of images {Ib}Bb=1 from {Iv} and

then apply the multiview correspondence regularized diffu-
sion on the batch of images. Denote the generated images
as {Igen

b }Bb=1, we add them to the set of generated images,
i.e., Dgen := Dgen

⋃{Igen
b }Bb=1. After that, we edit NeRF

with Dgen and training with Eq. (8) for 200 steps. A com-
parison of Single-Pass Dataset Update and Iterative Dataset
Update can be found below.

Iterative Update
1: Init NeRF F with input

Dinput = {Iv}
2: Init Dgen = Dinput

3: repeat
4: Sample Ii
5: Igen

i = Edit(Ii)
6: Dgen[i] = Igen

i

7: for i in range(NIU) do
8: Update F with Dgen

9: end for
10: until reach max steps
11: Return F

Single-Pass Update
1: Init NeRF F with input

Dinput = {Iv}
2: Init Dgen = {}
3: repeat
4: Sample {Ib}Bb=1

5: {Igen
b } = RegEdit({Ib})

6: Dgen := Dgen

⋃{Igen
b }

7: for i in range(NSU) do
8: Update F with Dgen

9: end for
10: until reach max steps
11: Return F

NIU and NSU are tuneable hyper-parameters, with default
values set at 10 (in [22]) and 200, respectively.

5. Experiments

Our experiments were conducted following the framework
proposed in Instruct-NeRF2NeRF [22]. Specifically, we
trained the input NeRF model using the Nerfacto model
within the Nerfstudio [72]. To evaluate the performance
of our method, we conducted experiments on the dataset
provided by Instruct-NeRF2NeRF, with the exception that
scenes containing identifiable human faces were replaced
with our re-captured versions for privacy and legal consid-
erations.
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Input NeRF Ours (2 mins) I-N2N [22] (20 mins) Vox-E [59] (55 mins) NeRF-Art [79] (2 hours)

Figure 7. Comparison with SoTA methods. For ours and Instruct-NeRF2NeRF, we use instructional text furnished with the suffix “Turn
the bear into a ...”. Background of input images is removed for Vox-E [59] and NeRF-Art [79].

Input NeRF Ours (30s) I-N2N [22] (20 mins) Ours (30s) I-N2N [22] (20 mins)

Figure 8. Comparison of the NeRF editing efficiency. Our method can effectively edit NeRFs in just 30 seconds for scene styles.

0 500 1000 1500 2000 2500 3000 3500
Training Steps

0.22

0.24

0.26

CL
IP

 Te
xt

-Im
ag

e 
Si

m
ila

rit
y

Ours
Instruct NeRF2NeRF

Figure 9. CLIP Text-Image Similarity score during training.
We repeat the experiments 10 times as the variance of the CLIP
Text-Image Similarity score is large. The exponential moving av-
erage is adopted to smooth the mean value curve.

Our approach significantly enhances the existing
method, Instruct-NeRF2NeRF [22], concerning its efficacy
in editing. However, illustrating the efficiency effects of
editing at various optimization steps is not straightforward

through images. Therefore, we earnestly recommend that
readers refer to our supplementary video for a more com-
prehensive comparison of the editing efficiency. Time in
this paper is all measured on a single A100. For our method,
editing a batch of 4 multiview images with our regulariza-
tion takes around 30 seconds, and 1 step of NeRF optimiza-
tion takes around 0.15 seconds.

5.1. Comparison with State-of-The-Arts

We primarily compare our methodology against the state-
of-the-art method Instruct-NeRF2NeRF [22]. We begin
by showing the CLIP Text-Image Similarity scores of the
edited NeRF along with training iterations, as depicted in
Fig. 9. The CLIP Text-Image Similarity score represents
the cosine similarity between the textual embedding and
the image embedding derived from CLIP. We use the text
about the target object within the given instructions. For
instance, if the instruction specifies ”Turn the bear into a
grizzly bear,” we utilize ”a grizzly bear” as the text input
for computing the similarity scores. Notably, we observe
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Figure 10. Our method can be combined with Instruct-NeRF2NeRF. Initializing with our method can speed up the editing with on-par
performance. (Prompt: “Turn the bear into a panda.”)

Figure 11. Comparison of training with LPIPS loss and style
loss. LPIPS loss is adopted in Instruct-NeRF2NeRF. (Prompt: “As
a bronze bust.”)

that the scores exhibit a high variance, with significant fluc-
tuations occurring after each iteration. Consequently, we
repeat the experiment 10 times and present the smoothed
average value for analysis. We can observe that our pro-
posed approach exhibits significantly accelerated conver-
gence in comparison to the Instruct-NeRF2NeRF method,
all the while achieving comparable performance outcomes
following optimization completion.

Furthermore, in Fig. 7, we present a visual comparison
between our method and Instruct-NeRF2NeRF, Vox-E [59]
and NeRF-Art [79]. While NeRF-Art [79] and Vox-E [59]
have shown commendable performance, we have opted not
to report their time metrics. This is due to the 3D represen-
tation adopted in their methodology, which makes it hard to
offer a justifiable comparison. We showcase the efficacy of
our approach in Fig. 8. Remarkably, we observe that our
method excels in editing scene style, potentially owing to
the ability of our regularization to attain superior multiview
coherence within this particular context.

5.2. Ablation Studies

Compatibility to Instruct-NeRF2NeRF. We have
demonstrated the effectiveness of our approach in the
preceding experimental section. However, it should be

noted that the final editing outcomes may not always match
the level of quality achieved by Instruct-NeRF2NeRF.
Although the similarity scores depicted in Fig. 9 in-
dicate a close performance between the two methods,
in practice, we have observed that our approach and
Instruct-NeRF2NeRF exhibit different generation patterns.
In certain instances, it becomes challenging to unequivo-
cally assert that our method is consistently more visually
appealing than Instruct-NeRF2NeRF.

To address this issue, we propose a solution that in-
volves combining our method with Instruct-NeRF2NeRF.
By initiating the optimization process with our approach
and subsequently switching to Instruct-NeRF2NeRF, we
can achieve improved results. The outcomes of this com-
bined method are presented in Fig. 10. It is evident from
the figure that following initialization with our method,
Instruct-NeRF2NeRF requires only 800 additional steps to
produce outcomes of comparable quality to those achieved
with 3000 steps without initialization.

Style Loss. In Sec. 4.3, we claimed that incorporating
style loss can effectively mitigate the influence of incon-
sistency in the input edited views. In Fig. 11, we present a
comparative analysis between the utilization of style loss
and the default LPIPS loss in Instruct-NeRF2NeRF. Re-
markably, we observe that the images exhibit enhanced
sharpness and a more consistent alteration in style through-
out the training procedure. As an illustration, we note the
gradual transition to a slightly green hue on the faces during
the middle stages of training with LPIPS loss.

6. Conclusion
We introduce an efficient framework for editing NeRF. Our
framework entails the editing of multiple views of images
using the proposed multiview correspondence regulariza-
tion. Subsequently, we perform optimization of NeRF using
these manipulated images. Our approach demonstrates con-
siderable efficiency when compared to recent SoTA meth-
ods such as Instruct-NeRF2NeRF. Unlike these methods,
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which rely on single-view editing and iterative optimization
of NeRF, our approach achieves multiview consistency in
the edited images without requiring iterative processes.
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1. Implementation details001

Our method is implemented on Nerfstudio [? ]. To get the002
correspondence inputs across different views, we start from003
the first image in the batch and directly calculate the corre-004
spondence points on other frames by projects. This is be-005
cause we have the NeRF input and the depth maps are avail-006
able for multiview projection. However, we found that us-007
ing the optical flow-based dense correspondence estimator,008
such as PIPS [? ] achieves a similar performance. For 360-009
degree scenes, we empirically found that PIPS is slightly010
more robust since there are heavy occlusions in the scene,011
and removing occluded areas can leave large areas of a view012
not regularized. An example is the front view and the back013
view of the bear scene. The bear image can be not regu-014
larized in this case if we use depth-based correspondence,015
but it can be regularized if we use optical-flow-based corre-016
spondence due to the similar patches in the images.017

A potential problem of the multiview correspondence018
regularization is that the regularization is designed to be ap-019
plied to batches. However, this can only improve the mul-020
tiview consistency for this specific batch, and there are no021
improvements across different batches. A straightforward022
way to solve the problem is that since every module is do-023
ing inference during diffusion, we can just cache the de-024
noising outputs on disk and then apply the regularization025
on all views. Apparently, caching intermediate denoising026
values takes a large amount of time, which is unwanted in027
our Efficient-NeRF2NeRF framework. Our solution to this028
problem is to use the same random noise across edits in dif-029
ferent batches.030

2. More quantitative results031

Here, we provide additional quantitative results following032
the evaluation in Instruct-NeRF2NeRF. The rationale be-033
hind including these results in the supplementary section034
lies in the observation that the metrics exhibit a consider-035
able amount of variance. Specifically, the CLIP-based sim-036
ilarity scores exhibit challenges in terms of reproducibility,037

Similarity score: 0.2383 Similarity score: 0.2467

Figure 1. The metric, CLIP text-image similarity, exhibits a con-
siderable amount of variance. For this example, the text for calcu-
lating similarity is “grizzly bear”. We slightly rotate the camera a
little bit, but the score changes a lot.

Method
CLIP Text-Image

Similarity
CLIP Direction

Consistency

Per-frame IP2P 0.2383 0.9124
One-time DU 0.1332 0.9482
Ours w/o reg 0.1820 0.9341

IN2N (2 mins) 0.1865 0.9978
IN2N (20 mins) 0.2156 0.9763

Ours (2 mins) 0.2127 0.9625

Table 1. Quantitative evaluation results on the tested scenes.

despite employing fixed random seeds and conducting re- 038
peated runs. As shown in Fig. 1, slightly rotating the cam- 039
era results in a big change in the similarity score. Further- 040
more, it is worth noting that the alignment between the sim- 041
ilarity scores and human preference often proves to be in- 042
adequate. Nevertheless, we report more detailed quantita- 043
tive results in Tab. 1. In the table, the method “Per-frame 044
IP2P” and “One-time DU” are following the baseline setup 045
in Instruct-NeRF2NeRF. “Per-frame IP2P” means directly 046
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apply frame-by-frame editing on the images. “One-time047
DU” means directly editing all images at the beginning of048
optimization. “Ours w/o reg” means using our method but049
without the regularization, and results with 2 minutes’ op-050
timization are reported. The variance of CLIP Text-Image051
Similarity is around 0.06 for all methods. The variance of052
CLIP Direction Consistency is around 0.03 for all meth-053
ods except IN2N with 2 minutes, since IN2N after 2 min-054
utes generates images roughly similar to the original NeRF.055
For testing the performance, we use the scenes released by056
Instruct-NeRF2NeRF and remove the “face” and “person-057
small” scenes due to privacy and legal concerns. For “farm-058
small” and “campsite-small”, we use six prompts as in059
Instruct-NeRF2NeRF: “Make it autumn”, “Make it mid-060
night”, “Make it look like it just snowed”, “Make it stormy”,061
“Make it sunset” and “Make it look like the Namibian062
desert”. For the “bear” scene, we use 3 prompts: “Turn063
the bear into a grizzly bear”, “Turn the bear into a panda”064
and “Turn the bear into a polar bear”.065
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