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World-consistent Video Diffusion with Explicit 3D Modeling
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Figure 1. WvD predicts 6D videos from an image, unifying various 3D tasks with a single diffusion model.

Abstract

Recent advancements in diffusion models have set new
benchmarks in image and video generation, enabling real-
istic visual synthesis across single- and multi-frame con-
texts. However, these models still struggle with efficiently
and explicitly generating 3D-consistent content. To address
this, we propose World-consistent Video Diffusion (WVD),
a novel framework that incorporates explicit 3D supervision
using XYZ images, which encode global 3D coordinates for
each image pixel. More specifically, we train a diffusion
transformer to learn the joint distribution of RGB and XYZ
frames. This approach supports multi-task adaptability via
a flexible inpainting strategy. For example, WVD can esti-
mate XYZ frames from ground-truth RGB or generate novel
RGB frames using XYZ projections along a specified cam-
era trajectory. In doing so, WVD unifies tasks like single-
image-to-3D generation, multi-view stereo, and camera-
controlled video generation. Our approach demonstrates
competitive performance across multiple benchmarks, pro-
viding a scalable solution for 3D-consistent video and im-
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age generation with a single pretrained model. Our project
website is at https://zqgh0253.github.io/wvd.

1. Introduction

Recent advancements in deep generative models have
brought significant breakthroughs to the field of visual syn-
thesis, with diffusion models [18, 47] emerging as the
state-of-the-art approach for high-quality image genera-
tion [9, 38]. These models have demonstrated remarkable
success in generating realistic images. By extending the
input from single-frame image to multiple frames, diffu-
sion models have also been applied to tasks such as video
generation [1, 2, 4, 12, 15, 19, 20, 57] and multi-view im-
age synthesis [11, 21, 26, 27, 43, 55, 63], where consis-
tency across frames is crucial. In these applications, multi-
frame consistency is typically learned in an implicit man-
ner, e.g., through the attention mechanism that captures re-
lationships across frames. Despite their success, multi-view
(video) diffusion models face several limitations: they de-
mand large amounts of data and significant computational
resources for training, and they lack explicit guarantees for


https://zqh0253.github.io/wvd

3D consistency, often leading to 3D inconsistencies.

In contrast to these implicit methods, some ap-
proaches [5, 13, 30, 32, 62] seek to explicitly model 3D
correspondences by embedding 3D inductive biases into
the generative pipeline. These methods leverage techniques
such as volume rendering [31], which can impose con-
straints that ensure 3D consistency in the generated images.
However, the integration of 3D inductive biases tends to
place heavy constraints on both the data and the architec-
tural design, making it difficult to scale these methods to
more complex datasets with diverse distributions.

To address these limitations, we propose a novel frame-
work for multi-view and video generation that introduces
explicit 3D supervision into diffusion models. Our method
is designed to handle both RGB image generation and
3D geometry modeling within a unified framework. A
major challenge in this integration arises from the inher-
ent incompatibility between traditional 3D geometry rep-
resentations and existing image architectures, such as the
2D Transformer-based models commonly used in diffusion
models (e.g., DiT [34]). To resolve this, we propose to use
XYZ images to represent 3D geometry, which are compat-
ible with 2D Transformer architectures. Each pixel in an
XYZ image records its corresponding global 3D coordi-
nates. Unlike RGB images, which encode complex texture
and lighting information, XYZ images are textureless and
only capture geometric information, making them ideal for
providing explicit 3D supervision during training.

Furthermore, because our model learns the joint distri-
bution of RGB and XYZ images during the training phase,
it can naturally perform conditional generation during in-
ference using a flexible inpainting strategy [28, 29]. This
enables the model to adapt to a wide range of tasks beyond
image synthesis, including camera pose estimation, single-
view and multi-view depth prediction from unposed images,
and camera-conditioned novel view synthesis. This versa-
tility allows our model to unify various generative and dis-
criminative tasks under a single framework.

We refer to our proposed method as WVD. The major
contributions of our work can be summarized as follows:

* We propose a novel approach to learn a multi-view diffu-
sion model with explicit 3D supervision.

* Via a flexible inference strategy, WVD is capable of uni-
fying various tasks within a single framework.

* WVD achieves competitive performance over different
tasks, showcasing the potential to become a world-
consistent 3D foundation model.

2. Related Work

Multi-view Diffusion Models. The advancement of multi-
view diffusion models represents a significant step in gen-
erative modeling, combining the robust generation capabil-
ities of diffusion frameworks with the complex requirement

for cross-view consistency. Notable approaches like MV-
Dream [43], ImageDream [55], Zero123++ [26], Consist-
Net [63], SyncDreamer [27], and ViewDiff [21] adapt text-
to-image diffusion models [38] to produce synchronized
multi-view outputs. Video diffusion models [1, 2, 4, 12,
15, 19, 20, 57] learn multi-view consistency from extensive
video datasets. Models like CameraCtrl [16], MotionC-
trl [59], and Camco [61] enhance video diffusion models
by introducing camera-specific conditions, which allow for
controlled synthesis of novel views across different perspec-
tives.

Estimating 3D from Multi-view Images. Estimating
3D structure from multi-view images remains a foun-
dational challenge in 3D vision. Classical approaches,
such as COLMAP [41], tackle this problem with a multi-
stage pipeline involving keypoint detection and matching,
RANSAC [10], Perspective-n-Point (PnP) solvers [10], and
a final bundled adjustment step for refinement. While clas-
sical geometric methods are effective, they require exten-
sive engineering and optimization, often making it chal-
lenging to achieve accurate solutions, especially with large
or complex datasets. Modern approaches study end-to-end
learning methods that simplify the 3D estimation pipeline
while also learning 3D priors from data. For example,
VGGsfm [54] introduces differentiability at every stage of
the COLMAP pipeline, making the process more adapt-
able to gradient-based optimization. DUSt3R [56] takes
this a step further by employing Vision Transformers to
regress point clouds directly from unposed image pairs.
Mast3R [25] builds on these methods, enhancing perfor-
mance by predicting features that increase the accuracy of
keypoint matching, resulting in more reliable 3D recon-
structions. These recent end-to-end approaches reduce the
need for complex engineering and iterative processes, offer-
ing an efficient alternative to traditional multi-view 3D re-
construction pipelines and paving the way for more robust
and scalable 3D vision applications.

3. World-consistent Video Diffusion (WVD)

In this section, we present World-consistent Video Diffu-
sion Models (WVD), which leverage diffusion models to
jointly model the distribution of RGB and XYZ frames
across different viewpoints. We begin by introducing foun-
dational concepts of diffusion models and its application in
modeling 3D content (Sec. 3.1), followed by an in-depth
discussion of our architectural design (Sec. 3.2).

3.1. Preliminaries

Diffusion Models. Standard diffusion models [18] oper-
ate by iteratively transforming noise into structured data
through a denoising process. More specifically, a data point
X is progressively noised through a forward process, yield-
ing a sequence {x;}7_, according to a variance-scheduled
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Figure 2. An illustration of WVD pipeline. The left part shows 6D videos formed by RGB and XYZ frames. On the right part, WVD
iteratively denoises the 6D videos based on a specified RGB frame, which is highlighted with a red box.

Gaussian distribution. The diffusion model aims to reverse
this, parameterized as pg(x:—1|x¢), where 6 denotes the
model parameters. To reduce the computation cost for high-
resolution inputs, LDM [38] improves by learning diffusion
in the latent space z = &(x) of a pretrained VAE [24].
Diffusion models are typically implemented using a UNet
architecture [39]. Recently, however, Diffusion Transform-
ers (DiT)[34] have emerged as a promising alternative.
Leveraging the self-attention mechanism of Transformers
to model intricate dependencies, DiT has demonstrated sig-
nificant improvements in the fidelity of generated outputs
and enhanced flexibility. This approach has shown poten-
tial across modalities, including images [6] and videos [3].
For instance, DiT can process videos by flattening and con-
catenating each frame into a single long sequence, allowing
it to jointly denoise all frames.

Multi-view Diffusion Models. A common approach for
diffusion models to learn 3D structure involves modeling
the joint distribution of multi-view images [27, 43] and re-
constructing 3D content in a second stage. This reconstruc-
tion is typically achieved either through optimization [31] or
feed-forward prediction [22]. One can use DiT to process
multi-view inputs similar to video diffusion, where DiT’s
attention layers operate across views. This implicitly cap-
tures 3D consistency, thus ensuring coherent image syn-
thesis across perspectives. To make the diffusion process
3D controllable, approaches like CAT3D [11] condition the
model on camera ray maps (r) [46] using pg(x¢—1|X¢,T).
This condition is crucial as it allows the trained model to
generate novel views during inference.

However, this approach has two clear challenges: (1) It
lacks explicit 3D guarantees, relying on the model to in-
fer consistency purely from multi-view images. This of-
ten requires significant computational resources and high-
quality data, yet it can still suffer from 3D inconsistency
failures; (2) Furthermore, the dependence on camera ray
inputs poses challenges for scaling to large datasets due
to fundamental ambiguities in existing camera representa-
tions. These representations struggle to handle variations
across datasets, necessitating non-trivial camera normaliza-
tion [60], which further complicates the training process.

3.2. Approach

To tackle the primary challenges faced by traditional multi-
view diffusion models, we propose World-consistent Video
Diffusion (WVD), drawing inspiration from advancements
in video diffusion models. Instead of incorporating addi-
tional camera control, our approach explicitly predicts 3D
geometry by simultaneously diffusing over RGB frames
and their corresponding point clouds. Specifically, the point
clouds are projected into each frame as XYZ images.

XYZ Image Representation. Point clouds are a widely
used representation of 3D geometry. However, their highly
unstructured nature (X € RY*3) poses significant chal-
lenges for learning with standard DiT architectures. To ad-
dress this, we propose representing a 3D scene using multi-
ple XYZ images, which provide a structured and learnable
format. The transformation from a point cloud to an XYZ
image is defined as:

X = R(N(X), X, 0), (D)



where C' = (P, K) represents the camera parameters, in-
cluding the pose (P) and intrinsic (X) matrices. Here, N is
a normalization function that centers and rescales the point
clouds within the range [-1, 1], and R is a rasterizer that
maps the normalized 3D point values onto an image plane,
using the 3D positions and camera transformations. This
representation ensures compatibility with existing architec-
tures while preserving the geometric structure of the scene.

The XYZ image has the same shape as its RGB coun-
terpart, with each pixel corresponding to a 3D point in the
global coordinate system. By combining XYZ and RGB
images into a unified 6D video representation, the model
effectively captures a 3D region while maintaining compat-
ibility with standard video diffusion architectures. Beyond
its simplicity and learnability, representing 3D geometry us-
ing XYZ images offers several additional benefits:

* Explicit Consistency Supervision: XYZ images are
texture-free and provide robust pixel alignment across
views, unlike RGB images, which are influenced by vari-
ations in texture and lighting. When two pixels in dif-
ferent views share the same value in XYZ images, they
correspond to the same location in the global 3D coordi-
nate system. This property facilitates strong pixel corre-
spondence across views, enabling direct 3D supervision
during the generation of both XYZ and RGB images.

* Elimination of Camera Control: By encoding 3D ge-
ometry directly, XYZ images obviate the need for addi-
tional camera information to align multiple views, as re-
quired in existing methods [11, 16]. This approach re-
duces camera-related ambiguities, making it practical to
scale up to larger and more complex datasets.

RGB-XYZ Diffusion. Following prior works [11], WVD
learns a DiT-like model in the latent space, operating on a
sequence of 6D video data {xRB gXYZ}N = Since xX¥2
is pre-normalized, it can be directly processed using pre-
trained VAEs [38] without requiring additional fine-tuning.
To improve computational efficiency, we concatenate the
RGB and XYZ latents along the channel dimension before
adding noise:

Zp = [S(ZCEGB),E(.’BﬁYZ)] c RLX2D, (2)
where L is the sequence length, D is the latent dimen-
sion. This design allows us to directly fine-tune pretrained
image or video diffusion models, significantly enhancing
training efficiency. The model can be trained using either
text- or image-conditioned data, depending on the dataset.
For instance, as illustrated in Fig. 2, in the case of image-
conditioned generation, the added noise on the conditional
image is simply removed at each iteration during training.

Post Optimization. As WVD directly predicts the point
clouds in the global coordinates, we can easily perform a

Perspective-n-Point (PnP) algorithm to recover the corre-
sponding camera C' = (P, K) and depth maps d given the
predicted XYZ images £XY7. In this paper, we directly per-
form gradient optimization over re-projection loss:
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pixel coordinates. This post-optimization step is efficient
and can be easily parallelized across views. Moreover, the
optimized depth map d and camera parameters C provide a
more accurate and physically consistent estimation XY of
the original XYZ image, which can be highly beneficial for

downstream tasks.

4. WVD as a 3D Foundation Model

WVD learns to generate RGB and XYZ frames together by
modeling the joint probability P(RGB,XYZ), effectively
capturing their interdependent structures and features. At
inference time, this joint distribution can be leveraged to es-
timate conditional distributions, such as P(XYZ | RGB) or
P(RGB | XYZ). This capability makes WVD a foundation
for supporting a wide range of downstream tasks.

4.1. Single-image to 3D Tasks

Given its training methodology, WVD can be directly ap-
plied to various single-image tasks, including monocular
depth estimation (as described in Eq. (3)), novel view syn-
thesis, and 3D reconstruction. Notably, unlike traditional
monocular depth estimation approaches that are typically
supervised to infer depth from single-image inputs, our ap-
proach estimates depth through a generative process. By
jointly sampling consistent surrounding views from the
learnt data distribution, WVD produces depth predictions
that are more 3D-grounded and consistent with the global
scene geometry.

4.2. Multi-view Stereo Tasks

Since WVD learns the distribution of videos, it can also be
applied to multi-view tasks with a collection of unposed
RGB images provided. In this setup, the model predicts
only the XYZ images through a diffusion process, follow-
ing a procedure akin to “in-painting” [44]. At each diffu-
sion step, the model’s RGB predictions are replaced with
the observed RGB values, ensuring consistency with the
given inputs while generating the missing XYZ compo-
nents. Consistent with the findings in [14], our early exper-
iments revealed that incorporating additional Langevin cor-
rection steps [48] significantly enhances the quality and sta-
bility of the in-painting process. With the additional post-
optimization steps (Eq. (3)), WVD not only reconstructs
3D geometry but also enables consistent multi-view video
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Figure 3. Illustration of camera-controlled multi-view generation pipeline. We first use WvD to infer the geometry from the input
image, and then project it to obtain XYZ images for novel views. Next, we employ an inpainting strategy to sample RGB images.

depth estimation. This capability makes it highly valuable
for applications that require accurate 3D scene interpreta-
tion from diverse viewing angles.

4.3. Controllable Generation Tasks

WVD also supports controllable video generation by lever-
aging the XYZ information in reverse mode. Similar to
existing multi-view diffusion models, WVD is trained in
a camera-agnostic manner, learning the underlying distri-
bution of camera trajectories implicitly without requiring
explicit conditional guidance. However, at inference time,
the model can be adapted to enable video generation with
camera control through point re-projection. As illustrated
in Fig. 3, the pipeline involves the following steps:

1. Single-image to 3D: We first estimate the points of the
input using standard WVD diffusion inference.

2. Point Re-projection: The synthesized point clouds are
projected onto the target camera poses, producing partial
XYZ images with corresponding projection masks, as
described in Eq. (1);

3. RGB & XYZ In-painting: Finally, WVD regenerates
the RGB images jointly with the projected XYZ images
through an in-painting process.

Unlike the scenario in Sec. 4.2, the projected XYZ im-
ages in this case are typically incomplete, requiring the
model to in-paint both the RGB and missing XYZ compo-
nents during the diffusion process. In addition, the above
point-guidance process enables us to maintain the union of
synthesized points as a “spatial memory,” where new video
frames are guided by the projected points. This approach al-
lows for the progressive generation of long video sequences
while enforcing explicit consistency constraints, ensuring
coherence across frames.

5. Experimental Results

5.1. Settings

Datasets. We train our model WVD on a mix-
ture of datasets: RealEstatel0OK [71], ScanNet [7],
MVImgNet [67], CO3D [37], and Habitat [40]. These

Table 1. Quantitative comparisons for single image to 3D.

Method FIDJ| KPM1 FCt
CameraCtrl [16] 12.1 88.6 94.0
MotionCtrl [59] 12.9 68.6 94.6
WVD 15.8 95.8 95.4
WVD w/o XYZ 18.3 72.3 95.0

datasets cover a broad range, from object-centric to scene-
centric distributions. For RealEstate10K, MVImgNet, and
CO3D, we use DUSt3R [56] to generate pseudo-ground-
truth point clouds. ScanNet offers ground-truth depth maps
that contain holes, which we fill using NeRF with depth reg-
ularization [8]. For Habitat, we directly utilize the rendered
ground-truth point cloud. All images are center-cropped
and resized to 256 x 256 resolution.

Implementation details. Our Diffusion Transformer has
2 billion parameters and is implemented with rotary po-
sitional embedding [50] and RMSNorm [68]. A detailed
model card is available in the Supplementary materials. As
for training, we employ a learning rate of 3 x 10~* using
the AdamW optimizer, with the momentum parameter set-
ting to 8 = (0.99,0.95). We train the model for 1 million
steps, with an effective batch size of 128. The training takes
approximately two weeks over 64 A100 GPUs.

5.2. Main Results

Single Image to 3D. Fig. 4 illustrates the synthesized
RGB and XYZ frames conditioned on a single RGB frame.
Our method effectively generates multi-view consistent
frames with remarkable detail across a diverse range of vi-
sual distributions. Furthermore, we visualize the 3D scenes
by projecting RGB pixels into 3D space using the corre-
sponding coordinates from the XYZ frames. The resulting
3D point cloud exhibits realistic appearance and geometry,
showcasing our ability to create 3D scenes from a single
image.

For quantitative comparison with baselines, we choose
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Figure 4. Synthesized Multi-view RGB and XYZ Images by WVD, and associated reconstructed point clouds. Input images are

randomly sampled across the validation set.

the following metrics to measure the quality of synthesized frames: (1) Frechet Inception Distance (FID) [17] measures
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Figure 5. Monocular depth estimation on NYU-v2 [45] and BONN [33] benchmarks. We present RGB input images, ground-truth
depth maps, and the predicted depth maps from DUSt3R (512 resolution) and WVD, respectively.
Re-projected XYZ Images

In-painted RGB Images Ground-truth RGB Images

ﬁﬁﬂ’
‘ .M\!\

Figure 6. Camera-controlled video generation. By re-projecting XYZ images and using them as conditions, our method can control the
camera movements in the synthesized videos, effectively replicating the trajectories of the real videos.

the per-frame appearance quality; (2) Key Points Matching (KPM) [58] assesses multi-view consistency by averaging



Table 2. Monocular depth estimation performance on NYU-
v2 [45] and BONN [33]. *DUSt3R-512 was trained with higher
resolution than ours.

NYU-v2 [45] BONN [33]
Rel | 412517 Rell 01257
RobustMIX [36] 11.8 90.5 - -
SlowTv [49] 11.6 87.2 - -
DUSt3R-224 [56] 10.3 88.9 11.1 89.1
DUSt3R-512 [56]* 6.5 94.1 8.1 93.6

WVD 9.7 90.8 7.0 96.4

Methods

the number of matching key points identified by a pretrained
matching model [51]. We use the numbers obtained from
the ground truth videos as a baseline and report the per-
centage of each method; (3) Frame Consistency (FC) [23]
assesses a video based on the similarity of the CLIP image
features among its frames. We choose CameraCtrl [16] and
MotionCtrl [59] as baselines, and show the results in Fig. 4.
Our method achieves comparable performance to Camer-
aCtrl and MotionCtrl in terms of frame appearance. It con-
sistently outperforms both baselines in multi-view consis-
tency, as measured by KPM and FC, highlighting the ad-
vantages of jointly modeling XYZ images alongside RGB
images.

Monocular depth estimation. As shown above, our
method can generate multi-view RGB and XYZ images
with single RGB frame. By converting the XYZ-encoded
point clouds into dense depth maps, we enable monocular
depth estimation. We evaluated our approach against other
zero-shot methods on the NYU-v2 [45] and BONN [33]
benchmarks for monocular depth estimation. We visualize
the result in Fig. 5. Although our method is never trained
over any depth prediction benchmark, our model can make
precise prediction given monocular image as input. Quanti-
tative comparison with baselines is presented in Tab. 2. On
BONN, our method outperforms all baseline models. While
DUSIt3R trained at 512 x 512 achieves the best performance
on NYU-v2, our model, despite being trained at a lower res-
olution (256 x 256), surpasses all other baseline methods.

Video depth estimation. As discussed in Sec. 4.2,
our model can estimate the conditional distribution of
P(XYZ | RGB) using an in-painting strategy. This allows
us to adapt our model for estimating 3D geometry based on
a set of unposed RGB images. We can sample point clouds
from P(XYZ | RGB), and subsequently convert these point
clouds into dense depth maps through post-optimization, ef-
fectively repurposing our method as a video depth estima-
tor. We benchmark this capability and present the perfor-
mance in Tab. 3. The results demonstrate that our method
performs on par with state-of-the-art approaches..

Table 3. Video depth estimation performance on ScanNet++.

ScanNet++
Method AbsRel \L (51,03 T
COLMAP [41, 41] 14.6 34.2
Vis-MVSSNet [69] 8.9 33.5
MVS2D [64] 27.2 5.3
DeMon [53] 75.0 0.0
MVSNet [65] 65.2 28.5
Robust MVD [42] 7.4 384
DeepV2D [52] 4.4 54.8
DUSt3R-224 [56] 5.9 50.8
DUSt3R-512 [56]* 4.9 60.2
WVD 5.0 57.2

Camera-controlled Video Generation. As mentioned in
Sec. 4.3, our model enables camera-controlled video gener-
ation. This is accomplished by first estimating 3D geometry
from a single input image, which is then used to guide the
generation of novel views.

We demonstrate this process in Fig. 6, showcasing the
ground-truth videos, the corresponding projected XYZ im-
ages, and the videos generated by our method. The synthe-
sized videos can mimic the camera motion observed in the
real videos, highlighting the effectiveness of our approach
for camera-controlled video synthesis.

Ablation of jointly predicting XYZ together with RGB
frames. In Tab. 1, we assess the necessity of learning
XYZ frames by training an RGB-only model. Without
learning the XYZ frames, both image quality and multi-
view consistency declines. This demonstrates that jointly
learning the XYZ frames offers explicit 3D supervision,
which enhances multi-view synthesis.

6. Discussions and Future Work

We introduce WvD, a DiT framework that jointly models
the distribution of multi-view RGB and XYZ images, en-
abling direct 3D scene generation without the need for post-
processing. Additionally, WD can be adapted for various
downstream tasks (e.g., monocular depth estimation, cam-
era pose estimation) through a flexible inference strategy.

While WvD demonstrates the potential to serve as a 3D
foundation model, the framework itself is not limited by
modality. Future work could explore incorporating different
modalities rather than 3D XYZ images (e.g., optical flow,
splatter images) within our framework to support an even
broader range of tasks.

Limitations. Our model currently has the following
limitations: (1) We have only trained on static datasets, re-



stricting its application to static scenes. Extending this work
to dynamic 4D datasets and jointly learning motion-related
representations, such as optical flow, would be a valuable
direction for future research. (2) Our model does not incor-
porate confidence maps, making it challenging to handle
unbounded or outdoor scenes. Jointly modeling XYZ with
confidence could improve performance in such scenarios.
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Appendix
A. Implementation Details

We begin by training a text-to-video Latent Diffusion
Model (LDM) on web-scale datasets, which serves as the
initialization for WvD. For this, we utilize the Variational
Autoencoder (VAE) from SDXL [35]. We implement 3D
self-attention to capture the spatial and temporal relation-
ships between image patches. In addition to the timestep,
we incorporate a binary mask to specify whether the frames
are RGB or XYZ. This conditioning information is inte-
grated through cross-attention. We remove the text embed-
ding from the original model.

Classifier-free guidance. During training, we randomly
select either a single RGB frame or a single XYZ frame for
conditioning. With classifire-free-guidance (CFG) imple-
mented, we randomly drop conditional images with a prob-
ability of 0.1 during training. The denoising score can be
written as:

€= (1 + w)(kGRGB + (1 o k)GXYZ) o weUncond7 (Al)

where €ROB, XYZ and e represent the estimated

scores with RGB conditioning, XYZ conditioning, and un-
conditional score, respectively. w is the guidance strength,
and k balances the guidance between RGB and XYZ. In
most cases, we select & = 1 to condition solely on RGB
frames. For camera-controlled video generation, we use
k=0.5.

Uncond

B. Camera-controlled Video Generation.

We present additional samples for camera-controlled video
generation using the test set from RealEstate]10K [70] in
Fig. Al. As shown, the synthesized videos closely repli-
cate the camera motion observed in the ground-truth videos,
highlighting our model’s camera-control capability. It’s im-
portant to note that camera information was not utilized dur-
ing training.

C. Multi-view Depth Estimation

We present samples over ScanNet++ [66] for multi-view
depth estimation in Fig. A2. As demonstrated, our method
can accurately estimate depth maps with video input.

D. Camera Estimation

As outlined in the main paper, our method can predict the
corresponding XYZ frames through inpainting when pro-
vided with ground-truth RGB frames. In addition to video
depth estimation, these XYZ frames can also be utilized for
camera estimation tasks. Specifically, we can easily per-
form a Perspective-n-Point (PnP) algorithm to extract the
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camera poses from point clouds represented by the XYZ
frames. We use gradient optimization over re-projection
loss as specified in the main paper. Fig. A3 presents re-
sults from the test set of RealEstate10K [70]. Our method
not only predicts accurate 3D geometry from unposed im-
ages but also estimates precise camera trajectories. The esti-
mated camera poses are in close agreement with the ground
truth.

E. In-the-wild Samples

We also evaluate our model on in-the-wild samples to as-
sess its generalizability. As illustrated in Fig. A4, our model
successfully generalizes to out-of-domain images, such as
those generated by AIGC algorithms. It can produce novel
view images, accurately estimate XYZ images, and recon-
struct 3D scenes from a single image. This demonstrates
that our method exhibits strong generalizability after train-
ing on a diverse mixture of datasets.
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Figure A1. Camera-controlled video generation. For each sample, the first row shows the ground-truth video sequence, and the second
row shows the synthesized frames which re-produce the camera trajectory. The conditioned frame is marked with a red box.
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Figure A2. Multi-view depth estimation on ScanNet++ [66]. For each sample, the first row presents the input video sequence, the second
row shows the ground-truth depth maps. The third row shows the depth maps synthesized by our method.
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Figure A3. Camera estimation. Column (a) shows input unposed images. Column (b) shows estimated XYZ images by our method.
Column (c) shows the estimated camera poses from the XYZ images, while column (d) provides the ground-truth camera poses.
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Figure A4. In-the-wild samples. We evaluate our model on in-the-wild samples to demonstrate its generalizability. The conditioned image
is highlighted with a red box.
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