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ABSTRACT

Diffusion probabilistic models have quickly become a major approach for gen-
erative modeling of images, 3D geometry, video and other domains. However,
to adapt diffusion generative modeling to these domains the denoising network
needs to be carefully designed for each domain independently, oftentimes under
the assumption that data lives in a Euclidean grid. In this paper we introduce
Diffusion Probabilistic Fields (DPF), a diffusion model that can learn distributions
over continuous functions defined over metric spaces, commonly known as fields.
We extend the formulation of diffusion probabilistic models to deal with this field
parametrization in an explicit way, enabling us to define an end-to-end learning
algorithm that side-steps the requirement of representing fields with latent vectors
as in previous approaches (Dupont et al., 2022a; Du et al., 2021). We empirically
show that, while using the same denoising network, DPF effectively deals with
different modalities like 2D images and 3D geometry, in addition to modeling
distributions over fields defined on non-Euclidean metric spaces.

1 INTRODUCTION

Diffusion probabilistic modeling has quickly become a central approach for learning data distributions,
obtaining impressive empirical results across multiple domains like images (Nichol & Dhariwal,
2021), videos (Ho et al., 2022) or even 3D geometry (Luo & Hu, 2021). In particular, Denoising
Diffusion Probabilistic Models (often referred to as DDPMs or diffusion generative models) (Ho
et al., 2020; Nichol & Dhariwal, 2021) and their continuous-time extension (Song et al., 2021b)
both present a training objective that is more stable than precursors like generative adversarial nets
(GANs) (Goodfellow et al., 2014) or energy-based models (EBMs) (Du et al., 2020). In addition,
diffusion generative models have shown to empirically outperform GANs in the image domain
(Dhariwal & Nichol, 2021) and to suffer less from mode-seeking pathologies during training (Kodali
et al., 2017).

A diffusion generative model consists of three main components: the forward (or diffusion) process,
the backward (or inference) process, and the denoising network (also referred to as the score network1

due to its equivalence with denoising score-matching approaches Dickstein et al. (2015)). A substan-
tial body of work has addressed different definitions of the forward and backward processes (Rissanen
et al., 2022; Bansal et al., 2022; Song et al., 2021a), focusing on the image domain. However, there are
two caveats with current diffusion models that remain open. The first one is that data is typically as-
sumed to live on a discrete Euclidean grid (exceptions include work on molecules (Hoogeboom et al.,
2022) and point clouds (Luo & Hu, 2021)). The second one is that the denoising network is heavily
tuned for each specific data domain, with different network architectures used for images (Nichol &
Dhariwal, 2021), video (Ho et al., 2022), or geometry (Luo & Hu, 2021).

In order to extend the success of diffusion generative models to the large number of diverse areas in
science and engineering, a unification of the score formulation is required. Importantly, a unification
enables use of the same score network across different data domains exhibiting different geometric
structure without requiring data to live in or to be projected into a discrete Euclidean grid.

†Work was completed while P.Z. was an intern with Apple.
1We use the terms score network/function and denoising network/function exchangeably in the paper.
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To achieve this, in this paper, we introduce the Diffusion Probabilistic Field (DPF). DPFs make
progress towards the ambitious goal of unifying diffusion generative modeling across domains by
learning distributions over continuous functions. For this, we take a functional view of the data,
interpreting a data point x ∈ Rd as a function f : M → Y (Dupont et al., 2022a; Du et al., 2021).
The function f maps elements from a metric space M to a signal space Y . This functional view of
the data is commonly referred to as a field representation (Xie et al., 2022), which we use to refer to
functions of this type. An illustration of this field interpretation is provided in Fig. 1. Using the image
domain as an illustrative example we can see that one can either interpret images as multidimensional
array xi ∈ Rh×w ×R3 or as field f : R2 → R3 that maps 2D pixel coordinates to RGB values. This
field view enables a unification of seemingly different data domains under the same parametrization.
For instance, 3D geometry data is represented via f : R3 → R, and spherical signals become fields
f : S2 → Rd.

In an effort to unify generative modeling across different data domains, field data representations
have shown promise in three recent approaches: From data to functa (Functa) (Dupont et al., 2022a),
GEnerative Manifold learning (GEM) (Du et al., 2021) and Generative Adversarial Stochastic Process
(GASP) (Dupont et al., 2022b). The first two approaches adopt a latent field parametrization (Park
et al., 2019), where a field network is parametrized via a Hypernetwork (Ha et al., 2017) that takes
as input a trainable latent vector. During training, a latent vector for each field is optimized in an
initial reconstruction stage (Park et al., 2019). In Functa (Dupont et al., 2022a) the authors then
propose to learn the distribution of optimized latents in an independent second training stage, similar
to the approach by Rombach et al. (2022); Vahdat et al. (2021). Du et al. (2021) define additional
latent neighborhood regularizers during the reconstruction stage. Sampling is then performed in
a non-parametric way: one chooses a random latent vector from the set of optimized latents and
projects it into its local neighborhood before adding Gaussian noise. See Fig. 2 for a visual summary
of the differences between Functa (Dupont et al., 2022a), GEM (Du et al., 2021) and our DPF.
GASP (Dupont et al., 2022b) employs a GAN paradigm: the generator produces a field while the
discriminator operates on discrete points from the field, and distinguishes input source, i.e., either
real or generated.

In contrast to prior work (Dupont et al., 2022a; Du et al., 2021; Dupont et al., 2022b), we formulate a
diffusion generative model over functions in a single-stage approach. This permits efficient end-to-end
training without relying on an initial reconstruction stage or without tweaking the adversarial game,
which we empirically find to lead to compelling results. Our contributions are summarized as follows:

• We introduce the Diffusion Probabilistic Field (DPF) which extends the formulation of
diffusion generative models to field representations.

• We formulate a probabilistic generative model over fields in a single-stage model using an
explicit field parametrization, which differs from recent work (Dupont et al., 2022a; Du
et al., 2021) and simplifies the training process by enabling end-to-end learning.

• We empirically demonstrate that DPF can successfully capture distributions over functions
across different domains like images, 3D geometry and spherical data, outperforming recent
work (Dupont et al., 2022a; Du et al., 2021; Dupont et al., 2022b).

2 BACKGROUND: DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) belong to the broad family of latent variable
models. We refer the reader to Everett (2013) for an in depth review. In short, to learn a parametric
data distribution pθ(x0) from an empirical distribution of finite samples q(x0), DDPMs reverse a
diffusion Markov Chain (i.e., the forward diffusion process) that generates latents x1:T by gradually
adding Gaussian noise to the data x0 ∼ q(x0) for T time-steps as follows:

q(xt|xt−1) := N
(
xt−1;

√
ᾱtx0, (1− ᾱt)I

)
. (1)

Here, ᾱt is the cumulative product of fixed variances with a handcrafted scheduling up to time-step
t. Ho et al. (2020) highlight two important observations that make training of DDPMs efficient: i)
Eq. (1) adopts sampling in closed form for the forward diffusion process. ii) reversing the diffusion
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Figure 1: The left panel shows the parametrization of each data domain as a field. For visualization
purposes we use the color red to denote the input to the field function (e.g., a metric space M where
the field is defined). In the right panel we show the graphical model of DPF, a diffusion generative
model to capture distributions over fields. In DPF the latent variables are fields f1:T that can be
evaluated continuously. By taking a field parametrization of data we unify diffusion generative
modeling across different domains (images, 3D shapes, spherical images) using the same score
network implementation.

process is equivalent to learning a sequence of denoising (or score) networks ϵθ, with tied weights.
Reparametrizing Eq. (1) as xt =

√
ᾱtx0 +

√
1− ᾱtϵ results in the “simple” DDPM loss

Lθ = Et∼[0,T ],x0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
, (2)

which makes learning of the data distribution pθ(x0) both efficient and scalable.

At inference time, we compute x0 ∼ pθ(x0) via ancestral sampling (Ho et al., 2020). Concretely,
we start by sampling xT ∼ N (0, I) and iteratively apply the score network ϵθ to denoise xT , thus
reversing the diffusion Markov Chain to obtain x0. Sampling xt−1 ∼ pθ(xt−1|xt) is equivalent to
computing the update

xt−1 =
1√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ z, (3)

where at each inference step a stochastic component z ∼ N (0, I) is injected, resembling sampling
via Langevin dynamics (Welling & Teh, 2011).

A central part of the learning objective in Eq. (2) is the score network ϵθ, which controls the marginal
distribution pθ(xt−1|xt). Notably, score networks are heavily tailored for each specific data domain.
For example, in the image domain, score networks are based on a UNet (Ronneberger et al., 2015)
with multiple self-attention blocks (Nichol & Dhariwal, 2021). In contrast, for 3D structures like
molecules, score networks are based on graph neural nets (Hoogeboom et al., 2022). To unify the
design of score networks across data domains, in this paper, we present the diffusion probabilistic
field (DPF), which introduces a unified formulation of the score network that can be applied to
multiple domains by representing data samples as fields.

3 DIFFUSION PROBABILISTIC FIELDS

A diffusion probabilistic field (DPF) is a diffusion generative model that captures distributions over
fields. We are given observations in the form of an empirical distribution q(f0) over fields (living in
an unknown field manifold) where a field f0 : M → Y maps elements from a metric space M to a
signal space Y . For example, in the image domain an image can be defined as a field that maps 2D
pixel coordinates to RGB values f0 : R2 → R3. In DPF the latent variables f1:T are fields that can
be continuously evaluated. To tackle the problem of learning a diffusion generative model over fields
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Figure 2: In DPF we explicitly parameterize a field by a set of coordinate-signal pairs, or context
pairs, as opposed to a latent vector z0 as in Functa (Dupont et al., 2022a) or GEM (Du et al., 2021).
This explicit field parametrization allows us to side-step the reconstruction training stage of prior
approaches and instead directly model the distribution of fields rather than the distribution of latents
that encode fields.

we need to successfully deal with the infinite dimensional nature of the field representation in the
forward process as well as in the score network and backward process.

We adopt an explicit field parametrization, where a field is characterized by a set of coordinate-signal
pairs {(mc,y(c,0))}, mc ∈ M,y(c,0) ∈ Y , which we denote as context pairs. For clarity we
row-wise stack context pairs and refer to the resulting matrix via C0 = [Mc, Y(c,0)]. Here, Mc

denotes the coordinate portion of all context pairs and Y(c,0) denotes the signal portion of all context
pairs at time t = 0. Note that the coordinate portion does not depend on the time-step by design.2
This is a key difference with respect to Functa (Dupont et al., 2022a) or GEM (Du et al., 2021),
both of which adopt a latent parametrization of fields, where a learnt field f̂ : Ψ(z0) ×M → Y
is parametrized by a latent weight vector z0 through a hypernetwork model Ψ (Ha et al., 2017).
Using a latent parametrization forces a reconstruction stage in which latents z0 are first optimized to
reconstruct their corresponding field (Park et al., 2019; Du et al., 2021) (i.e., defining an empirical
distribution of latents q(z0) living in an unknown latent manifold). A prior pθ(z0) over latents is
then learnt independently in a second training stage (Dupont et al., 2022a). In contrast, our explicit
field parametrization allows us to formulate a score field network, enabling DPF to directly model
a distribution over fields, which results in improved performance (cf. Sect. 4). Fig. 2 depicts the
differences between latent field parametrizations in Functa (Dupont et al., 2022a) and GEM (Du et al.,
2021), and the explicit field parametrization in DPF.

Adopting an explicit field parametrization, we define the forward process for context pairs by diffusing
the signal and keeping the coordinates fixed. Consequently the forward process for context pairs
reads as follows:

Ct = [Mc,Y(c,t) =
√
ᾱtY(c,0) +

√
1− ᾱtϵc], (4)

where ϵc ∼ N (0, I) is a noise vector of the appropriate size. We now turn to the task of formulating
a score network for fields. By definition, the score network needs to take as input the context pairs
(i.e., the field parametrization), and needs to accept being evaluated continuously in M in order to be

2We assume the geometry of fields does not change.
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Algorithm 1 Training
1: repeat
2: (C0,Q0) ∼ Uniform(q(f0))
3: t ∼ Uniform({1, . . . , T})
4: ϵc ∼ N (0, I), ϵq ∼ N (0, I)
5: Ct = [Mc,

√
ᾱtY(c,0) +

√
1− ᾱtϵc]

6: Qt = [Mq,
√
ᾱtY(q,0) +

√
1− ᾱtϵq]

7: Take gradient descent step on
∇θ ∥ϵq − ϵθ(Ct, t,Qt)∥2

8: until converged

f0 ∼ q(f0)

ǫθ(Ct, t,Qt)

R2

R3
Query pairs: Q0

Context pairs: C0

Diffused context pairs: Ct Diffused query pairs: Qt

Figure 3: Left: DPF training algorithm. Right: Visual depiction of a training iteration for a field in
the image domain. See Sect. 3 for definitions.

a field. We do this by using query pairs {mq,y(q,0)}. Equivalently to context pairs, we row-wise
stack query pairs and denote the resulting matrix as Q0 = [Mq, Y(q,0)]. Note that the forward
diffusion process is equivalently defined for both context and query pairs:

Qt = [Mq,Y(q,t) =
√
ᾱtY(q,0) +

√
1− ᾱtϵq], (5)

where ϵq ∼ N (0, I) is a noise vector of the appropriate size. However, the underlying field is solely
defined by context pairs, and query pairs merely act as points on which to evaluate the score network.
The resulting score field model is formulated as follows, ϵ̂q = ϵθ(Ct, t,Qt).

The design space for the score field model is spans all architectures that can process data in the
form of sets, like transformers or MLPs. In particular, efficient transformer architectures offer a
straightforward way to deal with large numbers of context and query pairs, as well as good mechanism
for query pairs to interact with context pairs via attention. For most of our experiments we use a
PerceiverIO (Jaegle et al., 2022), an efficient transformer encoder-decoder architecture, see Fig.
11 and Sect. B for details. In addition, in Sect. D we show that other architectures like vanilla
Transformer Encoders (Vaswani et al., 2017) and MLP-mixers (Tolstikhin et al., 2021) are also viable
candidates offering a very flexible design space without sacrificing the generality of the formulation
of DPF.

Using the explicit field characterization and the score field network, we obtain the training and
inference procedures in Alg. 1 and Alg. 2, respectively, which are accompanied by illustrative
examples for a field representation of images. For training, we uniformly sample context and query
pairs from f0 ∼ Uniform(q(f0)) and only corrupt their signal using the forward process in Eq. (4)
and Eq. (5). We then train the score field network ϵθ to denoise the signal in query pairs, given
context pairs (see Fig. 11 for a visualization using a PerceiverIO implementation). During sampling,
to generate a field f0 ∼ pθ(f0) we first define query pairs QT = [Mq, Y(q,T ) ∼ N (0, I)] on
which the field will be evaluated. Note that the number of points on which the score field is evaluated
during sampling has to be fixed (e.g., to generate an image with 32× 32 = 1024 pixels we define
1024 query pairs QT at time t = T ). We then let context pairs be a random subset of the query pairs.
We use the context pairs to denoise query pairs and follow ancestral sampling as in the vanilla DDPM
(Ho et al., 2020).3 Note that during inference the coordinates of the context and query pairs do not
change, only their corresponding signal value. The result of sampling is given by Q0 which is the
result of evaluating f0 at coordinates Mq .

4 EXPERIMENTAL RESULTS

We present results on multiple domains: 2D image data, 3D geometry data, and spherical data. Across
all domains we use the same score network architecture. We only adjust the dimensionality of the
metric space M and the signal space Y as well as the network capacity (i.e., number of layers, hidden

3More efficient sampling approaches like DDIM (Song et al., 2021a) are trivially adapted to DPF.
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Algorithm 2 Sampling

1: QT = [Mq,Y(q,t) ∼ N (0q, Iq)]
2: CT ⊆ QT ▷ Random subset
3: for t = T, . . . , 1 do
4: z ∼ N (0, I) if t > 1, else z = 0

5: Y(q,t−1) = 1√
αt

(
Y(q,t) − 1−αt√

1−ᾱt
ϵθ(Ct, t,Qt)

)
+ σtz

6: Qt−1 = [Mq,Y(q,t−1)]
7: Ct−1 ⊆ Qt−1 ▷ Same subset as in step 2
8: end for
9: return f0 evaluated at coordinates Mq

...

2048 query pairs

R2

R3

Context pairs: CT

Query pairs: QT

R2

R3

2048 query pairs

Context pairs: Ct−1

Query pairs: Qt−1

t = T

t = t− 1

Figure 4: Left: DPF sampling algorithm. Right: Visual depiction of the sampling process for a field
in the image domain.

CelebA-HQ 642 FID ↓ Pre. ↑Rec. ↑
VAE (Kingma & Welling, 2014) 175.33 0.799 0.001
StyleGAN2 (Karras et al., 2020a) 5.90 0.618 0.481

Functa (Dupont et al., 2022a) 40.40 0.577 0.397
GEM (Du et al., 2021) 30.42 0.642 0.502
GASP (Dupont et al., 2022b) 13.50 0.836 0.312
DPF (ours) 13.21 0.866 0.347

Table 1: Quantitative evaluation of image gen-
eration on CelebA-HQ (Karras et al., 2018). The
middle bar separates domain-specific (top) from
domain-agnostic approaches (bottom).

CIFAR-10 322 FID ↓ IS ↑
PixelIQN (Ostrovski et al., 2018) 49.46 5.29
NCSNv2 (Song & Ermon, 2020) 31.75 -
StyleGAN2 (Karras et al., 2020a) 3.26 9.74
DDPM (Ho et al., 2020) 3.17 9.46

GEM (Du et al., 2021) 23.83 8.36
DPF (ours) 15.10 8.43

Table 2: Quantitative evaluation of image gen-
eration on CIFAR-10 (Krizhevsky, 2009).The
middle bar separates domain-specific (top) from
domain-agnostic approaches (bottom).

units per layer, etc.) when needed. We implement the field score network ϵθ using a PerceiverIO
architecture (Jaegle et al., 2022), an efficient transformer that enables us to scale the number of both
context pairs and query pairs. Additional architecture hyperparameters and implementation details
are provided in the appendix.

4.1 2D IMAGES

We present empirical results on two standard image benchmarks: CelebA-HQ (Karras et al., 2018) 642
and CIFAR-10 (Krizhevsky, 2009) 322. All image datasets are mapped to their field representation,
where an image x ∈ Rh×w×3 is represented as a function f : R2 → R3 defined by coordinate-
RGB pairs. In Tab. 1 and Tab. 2 we compare DPF with Functa (Dupont et al., 2022a), GEM (Du
et al., 2021), and GASP (Dupont et al., 2022b), which are domain-agnostic generative models that
employ field representations. For completeness, we also report results for the domain-specific VAE
(Kingma & Welling, 2014), StyleGAN2 (Karras et al., 2020a) and DDPM (Ho et al., 2020). Similarly,
on CIFAR-10 data we compare with multiple domain-specific methods including auto-regressive
(Ostrovski et al., 2018) and score-based (Song & Ermon, 2020) approaches. We report Fréchet
Inception Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al., 2016) and
precision/recall metrics (Sajjadi et al., 2018) for different datasets.

We observe that DPF obtains compelling generative performance on both CelebA-HQ 642 and
CIFAR-10 data. In particular, DPF outperforms recent approaches that aim to unify generative
modeling across different data domains such as Functa (Dupont et al., 2022a) and GEM (Du et al.,
2021). In particular, we observe that DPF obtains the best Precision score across all domain-agnostic
approaches on CelebA-HQ 642 (Karras et al., 2018), as well as very competitive FID scores. One
interesting finding is that GASP Dupont et al. (2022b) reports comparable FID score than DPF.
However, when inspecting qualitative examples shown in Fig. 5 we observe GASP samples to contain
artifacts typically obtained by adversarial approaches. In contrast, samples generated from DPF are
more coherent and without artifacts. We believe the texture diversity caused by these artifacts to be
the reason for the difference in FID scores between GASP and DPF (similar findings were discussed
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GEM (Du et al., 2021) Functa (Dupont et al., 2022a)

GASP (Dupont et al., 2022b) DPF (ours)

Figure 5: Qualitative comparison of different domain-agnostic approaches on CelebA-HQ 642

(Karras et al., 2018). DPF generates diverse and globally consistent samples, without the background
blurriness of two-stage approaches like Functa (Dupont et al., 2022a) and GEM (Du et al., 2021) that
rely on an initial reconstruction step, or the artifacts of adversarial approaches like GASP (Dupont
et al., 2022b). All the images in this figure have been generated by a model, i.e., we do not directly
reproduce images from the CelebA-HQ dataset (Karras et al., 2018).

GEM (Du et al., 2021) DPF (ours)

Figure 6: Qualitative comparison of GEM (Du et al., 2021) and DPF on CIFAR-10 (Krizhevsky,
2009). DPF generates crisper samples than GEM (Du et al., 2021) while also better capturing the
empirical distribution.

in (Dupont et al., 2022a)). Finally, when studying empirical results on CIFAR-10 shown in Tab. 2,
we again see that DPF performs better than GEM (Du et al., 2021) both in terms of FID and IS.

Notably, we can observe a gap between domain-agnostic and the most recent domain-specific
approaches such as StyleGAN2 (Karras et al., 2020a) and DDPM (Ho et al., 2020). This gap is a
result of two main factors. First, domain-specific approaches can incorporate design choices tailored
to their domain in the score network (i.e., translation equivariance in CNNs for images). Second, the
training and inference settings are typically different for the domain-agnostic and domain-specific
approaches reported in Tab. 1 and Tab. 2. To further study this issue we refer readers to Sect. A,
where we compare the performance of DPF and DDPM (Ho et al., 2020) using the same training and
evaluation settings.

Finally, we show qualitative generation results for domain-agnostic approaches on CelebA-HQ 642

(Karras et al., 2018) and CIFAR-10 (Krizhevsky, 2009) in Fig. 5 and Fig. 6, respectively. We note
that for CelebA-HQ, DPF generates diverse and globally consistent samples, without the blurriness
(particularly in the backgrounds) observed in two-stage approaches (Dupont et al., 2022a; Du et al.,
2021) that rely on an initial reconstruction step, or the artifacts of adversarial approaches (Dupont
et al., 2022b). When evaluated on CIFAR-10 (Krizhevsky, 2009), we see that DPF generates crisper
and more diverse results than GEM (Du et al., 2021).

4.2 3D GEOMETRY

We now turn to the task of modeling distributions over 3D objects and present results on the ShapeNet
dataset (Chang et al., 2015). We follow the settings in GEM (Du et al., 2021) and train our model on
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ShapeNet 643 Coverage ↑ MMD ↓
Latent GAN (Chen & Zhang, 2019) 0.389 0.0017
GASP (Dupont et al., 2022b) 0.341 0.0021
GEM (Du et al., 2021) 0.409 0.0014
DPF (ours) 0.419 0.0016

Table 3: Quantitative evaluation of 3D geometry gener-
ation on ShapeNet (Chang et al., 2015). DPF outperforms
prior approaches both in terms of Coverage and MMD met-
rics.

∼ 35k ShapeNet objects, where each object is represented as a voxel grid at a 643 resolution. Each
object is then represented as a function f : R3 → R1. Following the settings of GEM (Du et al.,
2021), we report coverage and MMD metrics (Achlioptas et al., 2018) computed from sampling
2048 points on the meshes obtained from the ground truth and generated voxel grids. We compare
them using the Chamfer distance. In Tab. 3 we compare DPF performance with 3 baselines: Latent
GAN (Chen & Zhang, 2019), GASP (Dupont et al., 2022b) and GEM (Du et al., 2021). We train
DPF at 323 resolution. During sampling we evaluate 323 query pairs on the score field, then reshape
the results to a 3D grid of 323 resolution and tri-linearly up-sample to the final 643 resolution for
computing evaluation metrics.

DPF outperforms both GEM (Du et al., 2021) and GASP (Dupont et al., 2022b) in learning the
multimodal distribution of objects in ShapeNet, as shown by the coverage metric. In addition, while
GEM (Du et al., 2021) performs better in terms of MMD, we do not observe this difference when
visually comparing the generated samples shown in Fig. 7. We attribute this difference in MMD
scores to the fact that MMD over-penalizes fine-grained geometry.

4.3 DATA ON S2

Straightforwardly, DPF can also learn fields that are not defined in the Euclidean plane. To demon-
strate this, we show results on signals defined over the sphere. In particular, following Cohen et al.
(2018), we use a stereographic projection to map image data onto the sphere. Hence, each resulting
example is represented as a field f0 : S2 → Rd. To uniformly sample points in S2 we use the
Driscoll-Healy algorithm (Driscoll & Healy, 1994) and sample points at a resolution of 322 and 642

for spherical MNIST (LeCun et al., 1998) and AFHQ (Choi et al., 2020) data, respectively. In Fig. 8
we show the distribution of real examples for MNIST (LeCun et al., 1998) and AFHQ (Choi et al.,
2020) images projected on the sphere as well as the samples generated by our DPF. Unsurprisingly,
since DPF is agnostic to the geometry of the metric space M, it can generate crisp and diverse
samples for fields defined on the sphere.

5 RELATED WORK

Generative modeling has advanced significantly in recent years with generative adversarial nets
(GANs) (Goodfellow et al., 2014; Mao et al., 2017; Karras et al., 2020b) and variational auto-
encoders (VAEs) (Vahdat & Kautz, 2020) showing impressive performance. Even more recently,
diffusion-based generative modeling has obtained remarkable compelling results (Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b).

GASP (Dupont et al., 2022b) GEM (Du et al., 2021) DPF (ours)

Figure 7: Qualitative comparison of different domain-agnostic approaches on ShapeNet (Chang
et al., 2015).
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Real samples for spherical MNIST. Real samples for spherical AFHQ.

DPF samples (ours). DPF samples (ours).

Figure 8: Qualitative comparison of empirical and generated samples for spherical versions of
MNIST and AFHQ (Choi et al., 2020).

The formulation developed in DPF is orthogonal to the body of work on Riemannian generative
models (Bortoli et al., 2022; Gemici et al., 2016; Rozen et al., 2021). The goal in Riemannian
generative modeling is to explicitly constraint the learned density to a Riemannian manifold structure.
For example, a Riemannian generative model can learn a distribution of points x ∈ S2 on the 2D
sphere S2, explicitly enforcing that any generated samples lie on the sphere. In contrast, DPF learns
a generative model over a distribution of multiple samples of signals defined on the sphere, or any
other metric space.

The DPF formulation also differs from the recently introduced Functa (Dupont et al., 2022a), GEM
(Du et al., 2021) and GASP (Dupont et al., 2022b). The first two approaches adopt a latent field
parametrization (Park et al., 2019) and a two-stage training paradigm. However, different from our
work, the field network in Functa and GEM is parametrized via a hypernetwork (Ha et al., 2017)
that takes as input a trainable latent vector. During training, a small latent vector for each field is
optimized in an initial auto-decoding or compression) stage (Park et al., 2019). In the second stage, a
probabilistic model is learned on the latent vectors. GASP (Dupont et al., 2022b) leverages a GAN
whose generator produces field data whereas a point cloud discriminator operates on discretized data
and aims to differentiate input source, i.e., either real or generated. Two-stage approaches like Functa
(Dupont et al., 2022a) or GEM (Du et al., 2021) make training the probabilistic model in the second
stage more computationally efficient than DPF. This training efficiency of the probabilistic model
often comes at the cost of compressing fields into small latent vectors in the first stage, which has a
non-negligible computational cost, specially for large datasets of fields.

The formulation introduced in DPF has is closely related to recent work on Neural Processes (NPs)
(Garnelo et al., 2018; Kim et al., 2019; Dutordoir et al., 2022), which also learn distributions over
functions via context and query pairs. As opposed to the formulation of Neural Processes which
optimizes an ELBO Kingma & Welling (2014) we formulate DPF as a denoising diffusion process
in function space, which results in a robust denoising training objective and a powerful iterative
inference process. In comparison with concurrent work in Neural Processes (Garnelo et al., 2018;
Kim et al., 2019; Dutordoir et al., 2022) we do not explicitly formulate a conditional inference
problem and look at the more challenging task of learning an unconditional generative model over
fields. We extensively test our hypothesis on complex field distributions for 2D images and 3D shapes,
and on distribution of fields defined over non-Euclidean geometry.

6 CONCLUSION

In this paper we made progress towards modeling distributions over fields by introducing DPF. A
diffusion probabilistic model that directly captures a distribution over fields without resorting to a
initial reconstruction stage (Dupont et al., 2022a; Du et al., 2021) or tweaking unstable adversarial
approaches (Dupont et al., 2022b). We show that DPF can capture distributions over fields in different
domains without making any assumptions about the data. This enables us to use the same denoising
architecture across domains obtaining satisfactory results. In addition, we show that DPF can be used
to learn distributions over fields defined on non-Euclidean geometry.
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7 ETHICAL STATEMENT

When considering ethical impact of generative models like DPF a few aspects that need attention
are the use generative models for creating disingenuous data, e.g., “DeepFakes” Mirsky & Lee
(2021), training data leakage and privacy Tinsley et al. (2021), and amplification of the biases present
in training data Jain et al. (2020). For an in-depth review of ethical considerations in generative
modeling we refer the reader to Rostamzadeh et al. (2021). In addition, we want to highlight that any
face images we show are generated from our model. We do not directly reproduce face images from
any dataset.

8 REPRODUCIBILITY STATEMENT

We take great care in the reproducibility of our results. We provide links to the public implementations
that can be used to replicate our results in Sect. A and Sect. B, as well as describing all training
parameters in Tab. 6. All of the datasets we report results on are public and can be freely downloaded.
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APPENDIX

In this supplementary material, we provide an ablation study (Sect. A), implementation details
(Sect. B), additional experiments and visualizations (Sect. C), limitations and future work (Sect. G).

A ABLATION

In this section we ablate the critical design choices and hyperparameters of DPF. We train all model
variants on the CelebA-HQ 642 dataset (Karras et al., 2018).

Performance gap between DPF and DDPM (Ho et al., 2020). We aim to provide a fair comparison
between DPF and DDPM (Ho et al., 2020). For this we use the implementation of the DDPM score
network by Ho et al. (2020)4 and train both DDPM and DPF with the same settings: batch size,
learning rate schedule, number of epochs, etc. During inference we use ancestral sampling and
perform 1000 denoising steps. In Tab. 4 we observe the gap between DDPM (Ho et al., 2020) (a
domain-specific approach) and DPF to be much smaller than it is in Tab. 2. Furthermore, when
we approximately equate the number of parameters of the score network in DDPM and our score
field model (67.6M vs. 62.4M parameters), we find that DPF outperforms DDPM in both FID and
recall metrics. We attribute this to the fact that DPF better captures globally consistent samples and
long-range interactions. We show qualitative results generated by DDPM (Ho et al., 2020) and DPF
in Fig. 9.

DDPM (Ho et al., 2020) (120M paramters)

DPF (ours, 62.4M paramters)

Figure 9: Visualization of DDPM (Ho et al., 2020) and DPF results on CelebA-HQ (Karras et al.,
2018) dataset. All the images show in this figure are generated by a model, we do not directly
reproduce images from the CelebA-HQ dataset (Karras et al., 2018)

Moreover, we are interested in understanding whether the major bottleneck for DPF is on encoding
context pairs or decoding query pairs (e.g., evaluating the field at query coordinates). To verify this,
we design two ablation experiments. One experiment is to replace the DPF encoder with a UNet
and the other one is to replace the DPF decoder with a UNet. We show quantitative results in Tab. 4.
We observe that DPF with a UNet decoder achieves the best performance w.r.t. FID, precision and
recall scores. These empirical results suggest that further improvements might be obtained by better
decoding of query pairs in DPF.

Resolution-free generation. Importantly, DPF differs from classic DDPM (Ho et al., 2020) in
that DPF generates fields that can be evaluated at continuous points using query pairs, i.e., context
pairs used during training differ from query pairs applied at inference. This enables DPF to learn
continuous fields rather than naively memorizing discretized data samples. To verify this, we sample
DPF at a different resolution than the one it was trained on. Specifically, we train DPF on CelebA-HQ
(Karras et al., 2018) at a resolution of 642 while using 1282 query pairs to generate high resolution
images, as shown in Fig. 10. From Fig. 10, we observe that DPF can generate accurate high-resolution
image fields given low-resolution context and query pairs during training. For context, we compare

4Code available at https://github.com/rosinality/denoising-diffusion-pytorch.
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Org. Ours Nearest Bi-linear Org. Ours Nearest Bi-linear

Figure 10: Qualitative results of super-resolution image generation. We generate images at 1282
resolution (row 1) given 642 context points (top left). We show zoom-in results (row 2). We compare
our results with nearest neighbor and bi-linear upsampling. All the images in this figure have been
generated by a model, i.e., we do not directly reproduce images from the CelebA-HQ dataset (Karras
et al., 2018).

CelebA-HQ 642 # Params. # Channel FID ↓ Precision ↑ Recall ↑
DDPM (Ho et al., 2020) 120M 128 11.26 0.916 0.384
DDPM (Ho et al., 2020) 67.6M 96 24.93 0.927 0.213
DPF (ours) 62.4M - 13.21 0.866 0.347
DPF (w/ a UNet encoder) 127M 128 20.79 0.916 0.323
DPF (w/ a UNet decoder) 62.5M 128 12.27 0.877 0.457

Table 4: DDPM (Ho et al., 2020) vs. DPF under the same setting. The DDPM models are
implemented using a UNet architecture (Ronneberger et al., 2015) with a convolutional channel
number of 128 (row 1) and 96 (row 2), respectively. We also use a UNet architecture to replace either
the encoder (row 4) or the decoder (row 5) of DPF.

our results with standard nearest neighbor or bi-linear upsampling. In Fig. 10, we show that our
results enjoy comparable or higher quality w.r.t. texture details than the upsampled results.

DPF hyperparameters. We provide an ablation over different DPF hyperparameters. In Tab. 5 we
study the effect of varying the number of context pairs used during training. In Tab. 6 we evaluate
different PerceiverIO (Jaegle et al., 2022) hyperparameters. For the comparisons in Tab. 5 and Tab. 6
we train models for 180 epochs and compute FID metrics using 1k samples.

As we see in Tab. 5, decreasing the number of context pairs leads to a drop in FID scores. This is
expected since a smaller number of context pairs reduces the fidelity at which the field is represented.
Also noteworthy, we have not optimized score network hyper-parameters for a reduced number of
context pairs, i.e., they are selected only based on the performance of the model trained with the full
set of context pairs.

The results reported in Tab. 6 show the effects of reducing the number of parameters in the PerceiverIO
architecture, using different knobs. We observe: decreasing the capacity of the latents (either number
of latents or their dimensionality) has a higher impact than decreasing the depth of the model (number
of blocks in the encoder, decoder, or the number of self-attention layers in encoder blocks).

CelebA-HQ 642 FID

# context pairs = 1028 (50%) 103.86
# context pairs = 2048 (75%) 91.12
# context pairs = 4096 (100%) 74.89

Table 5: Performance of DPF trained with different number of context pairs. Context pairs are
randomly samples during training. The FID score is evaluated after 180 epochs for 1k samples.
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CelebA-HQ 642 # Params. FID

# latents = 256 62.3M 93.54
# dim latents = 256 22.8M 96.63
# decoder blocks = 2 59.7M 77.29
# blocks = 6 35.4M 83.87
# S.A. block = 1 43.5M 75.52

Base 62.4M 74.89

Table 6: Performance of DPF with different PerceiverIO (Jaegle et al., 2022) hyperparameters.
The base hyperparameters we use in the experiments are: 512 latents with a dimensionality of 512,
12 encoder blocks with 2 self-attention modules and 4 decoder blocks. The FID score is evaluated
after 180 epochs for 1k samples. For more details on hyperparameters and implementation details
see Sect. B.

B IMPLEMENTATION DETAILS

The design space for the implementation of the score field in DPF spans all architectures that can deal
with irregularly sampled data, like Transformers (Vaswani et al., 2017) or MLPs (Tolstikhin et al.,
2021) (see Sect. D). Unless otherwise noted, we implement DPF using a PerceiverIO (Jaegle et al.,
2022), an efficient encoder-decode transformer architecture. Our motivation to choose a PerceiverIO
is that it provides a straightforward way of dealing with a large number context and query pairs, and
a natural way for encoding the interaction between context and query pairs via attention.In Fig. 11
we show how context and query pairs are used within the PerceiverIO architecture. Specifically, the
encoder maps context pairs to latent arrays (e.g. a set of learnable vectors) via a cross-attention layer.
Similarly the decoder maps query pairs to latent arrays via cross-attention blocks. We refer readers
to Jaegle et al. (2022) for additional discussions around the PerceiverIO architecture.

For conditioning the score computation on the time-step t we simply concatenate a positional
embedding representation of t to the context and query pairs. PerceiverIO settings for all experiments
with quantitative evaluation are show in Tab. 6. In practice, the DPF encoder has 12 transformer
blocks, each of which contains 1 cross-attention layer followed by 2 self-attention layers. Both
cross-attention and self-attention layers have 4 attention heads. The latent array has a dimension of
512 × 512 for 642 resolution images and 1024 × 1024 for 322 resolution images. We use Fourier
feature position encoding to represent coordinates and time steps with a frequency of 10 and 64,
respectively. We use an Adam (Kingma & Ba, 2015) optimizer during training. We set the learning
rate to 1e − 4. We set the batch size to 16 for all image datasets. We use 8 A100 GPUs for all
experiments. Finally, for PerceiverIO we use a modification of the public repository.5

C ADDITIONAL EXPERIMENTS

Visualization of denoising process. In Fig. 12 we visualize the denoising process over time from
left to right on CelebA-HQ (Karras et al., 2018) and CIFAR-10 (Krizhevsky, 2009) data.

Visual results on additional image datasets. In Fig. 16 we show qualitative results of DPF on
additional image datasets, including AHFQ (Choi et al., 2020), FFHQ (Karras et al., 2019) and LSUN
church (Yu et al., 2015) data at 32 × 32 resolution. In Fig. 17 we show videos of generated fields
over spherical geometry (view with Adobe Acrobat to see animations).

D ARCHITECTURE ABLATION FOR THE SCORE FIELD NETWORK ϵθ IN DPF

The formulation of DPF is independent of the specific implementation of the score network ϵθ, with
the design space of the score model spanning a large number options. In particular, all architectures

5https://huggingface.co/docs/transformers/model_doc/perceiver
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Ct = [Mc,Y(c,t)]

Qt = [Mq,Y(q,t)]

R2

R3

Context pairs: Ct

Query pairs: Qt

[R2,R3]

[R2,R3] R3

ǫ̂q

Figure 11: Interaction between context and query pairs in the PerceiverIO architecture. Context pairs
Ct attend to a latent array of learnable parameters via cross attention. The latent array then goes
through several self attention blocks. Finally, the query pairs Qt cross-attend to the latent array to
produce the final noise prediction ϵ̂q .

Figure 12: Visualization of denoising process from t = 1000 (noise) to t = 0 (images) on
CelebA-HQ (Karras et al., 2018) (left) and CIFAR-10 (Krizhevsky, 2009) (right).

that can process irregular data like transformers or MLPs are viable candidates. To support this
claim, we perform an evaluation on CelebA-HQ at 32× 32 resolution where we compare 3 different
architectures: a PerceiverIO Jaegle et al. (2022), a vanilla Transformer Encoder Vaswani et al.
(2017) and an MLP-mixer (Tolstikhin et al., 2021). We report FID and KID metrics using 1000
samples obtained using the inference process described in Alg. 2.To provide a fair comparison
we roughly equate the number of parameters (to approximately 55M) and settings (e.g. number of
blocks, parameters per block, etc.) of each model and train them for 500 epochs. To simplify the
evaluation we use the same number of context and query pairs. Both the Transformer Encoder and
the MLP-mixer process context pairs as input using their respective architectures and the resulting
latents are then concatenated with the corresponding query pairs and fed to linear projection layer for
the final prediction.

In Tab. 8, we see how the formulation of DPF is amenable to different architecture implementations
of the score field model. In particular, we observe relatively similar performance across the board
for different architectures, from transformer based to MLPs. We also observe the same behaviour
when looking at the qualitative samples shown in Fig. 14. This supports our claim that the benefits
of DPF are due to its formulation and not the particular incarnation of the score field model. Each
particularly architecture has its own benefits, for example, MLP-mixers allow for high throughput,
transformer encoders are simple to implement, and PerceiverIO allows for large and variable number
of context and query pairs. We believe that combining the strengths of these different architectures is
a very promising future direction of progress for DPF. Finally, note that these empirical results are
not directly comparable to ones reported in other sections of the paper since these models generally
have roughly 50% of the parameters of the models used in other sections.

Furthermore, in Fig. 13 we also provide a qualitative comparison of MLP-mixers and PerceiverIO
results on the Spherical MNIST dataset used in Sect. 4. In which we can see how both a PerceiverIO
and an MLP-mixer successfully capture the distribution of digits over the sphere. This supports the
claim that the data-agnostic capabilities for generative modeling introduced in DPF are not a function
of the particular implementation of the score field, but due to the formulation.
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Hyper-parameter CelebA-HQ (Karras et al., 2018) CIFAR-10 (Krizhevsky, 2009) ShapeNet (Chang et al., 2015)

train res. 642 322 323

eval res. 642 322 643

#context pairs 4096 2048 32768
#query pairs 4096 2048 32768
#dim coordinates 2 2 3
#dim signal 3 3 1

#freq pos. embed 10 10 10
#freq pos. embed t 64 64 64

#latents 1024 512 512
#dim latents 1024 512 1024
#blocks 12 12 12
#dec blocks 1 1 1
#self attends per block 2 2 2
#self attention heads 4 4 4
#cross attention heads 4 4 4

batch size 128 128 16
lr 1e − 4 1e − 4 1e − 4
epochs 1300 1300 1000

Table 7: Hyperparameters and settings for DPF on different datasets.

CelebA-HQ 322 FID ↓KID ↓ ×103

PeceiverIO (Jaegle et al., 2022) 64.8 7.10
Transf. Enc. (Vaswani et al., 2017) 70.1 10.27
MLP-mixer (Tolstikhin et al., 2021) 66.8 7.89

Table 8: Quantitative evaluation of image generation on CelebA-HQ (Karras et al., 2018) at 32x32
resolution for different implementation of the score field ϵθ.

E QUALITATIVE COMPARISON WITH FUNCTA (DUPONT ET AL., 2022A) AND
GASP (DUPONT ET AL., 2022B) ON S2.

We provide a qualitative comparison with Functa (Dupont et al., 2022a) and GASP (Dupont
et al., 2022b) on fields defined over the sphere. In order to do this, we used the
ERA5 temperature dataset released with GASP https://github.com/EmilienDupont/
neural-function-distributions which is available at a 46× 90 spherical resolution. It
is important to note that this dataset is different from the ERA5 dataset used to train Functa (Dupont
et al., 2022a), which is sampled at a higher resolution (181 × 360) and is not publicly available
in their repository https://github.com/deepmind/functa. In Fig. 15 we show samples
generated by Functa (Dupont et al., 2022a), GASP (Dupont et al., 2022b) and DPF. We observe
that samples generated by DPF are visually indistinguishable from those of Functa or GASP. DPF
captures the same patterns as Functa and GASP, where the poles having cooler temperatures (e.g..
dark purple tones) and the equator and tropics having considerably high temperatures shown by the
lighter yellow color.

F SAMPLING CONTEXT AND QUERY PAIRS

A natural question that falls from the formulation of DPF via context and query pairs is the following:
is there an intuition for which context and query pairs to sample from the field?

For query pairs the answer is simple: one should sample as many pairs as required in the problem
definition. For example, if the task is that of sampling a field representation of an image at 32× 32
resolution, one should sample 32× 32 = 1024 query pairs. In this sense, the number and distribution
of query pairs is entirely problem dependent and flexible and DPF allows for this flexibility.

Selecting which context pairs to sample is a far more intricate problem. To discuss it we exploit the
intimate relationship between the formulation in DPF and Gaussian Processes (GPs). In particular,
one can look at the problem of choosing context pairs as equivalent to the problem of selecting
inducing variables in Sparse GPs Quinonero-Candela & Rasmussen (2005), which is a combinatorial
problem for which approximations are computed. While there exists different approximations to the
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(a) PerceiverIO (Jaegle et al., 2022).

(b) Transformer Encoder (Vaswani et al., 2017)

(c) MLP-mixer (Tolstikhin et al., 2021)

Figure 13: Qualitative comparison of different architectures to implement the score field model ϵθ.

(a) PerceiverIO (Jaegle et al., 2022) (b) MLP-mixer (Tolstikhin et al., 2021).

Figure 14: Qualitative comparison of different implementations of the score field for functions
defined on the sphere. (a) PerceiverIO (Jaegle et al., 2022). (b) MLP-mixer (Tolstikhin et al., 2021).

problem of selecting inducing variables we highlight 3 classical methods which are representative
broader classes of approaches. In (Titsias, 2009) a variational approximation that jointly infers the
inducing inputs and the kernel hyperparameters by maximizing a lower bound of the true log marginal
likelihood is introduced. A key property of this formulation is that the inducing inputs are defined to
be variational parameters. On a different approach Williams & Seeger (2000) introduce a Nystrom
approximation of the eigendecomposition of the Gram matrix across inducing variables (i.e.context
pairs). Finally, the work of Tipping (1999) introduces the Relevance Vector Machine (RVM) which
can be thought of as a Sparse version of the Support Vector Machine embedded within a Bayesian
learning framework. Note that since the RVM is a finite linear model with Gaussian priors on the
weights, it can be seen as a Gaussian Process.

An interesting direction of future work is to draw inspiration from Sparse GP approximations
to formulate a learning objective that jointly learns the generative model in DPF as well as the
distribution of context pairs in a hierarchical manner.

G LIMITATIONS AND FUTURE WORK

While DPF makes progress toward learning distributions over fields, there exist some limitations
and opportunities for future work. The first limitation is that a vanilla implementation of the score
network as a transformer becomes computationally prohibitive even at low resolutions, due to the
quadratic cost of computing attention over context and query pairs. To alleviate this issue, we leverage
the PerceiverIO (Jaegle et al., 2022) architecture that scales linearly with the number of query and
context pairs. To further address this, one possible direction of future work is to explore other efficient
transformer architectures (Zhai et al., 2022). In addition, similar to DDPM (Ho et al., 2020), DPF
iterates over all time steps during sampling to produce a field during inference, which is slower
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(a) Functa (Dupont et al., 2022a) (181× 360 resolution)

(b) GASP (Dupont et al., 2022b) (46× 90 resolution)

(c) DPF (ours) (46× 90 resolution)

Figure 15: Qualitative comparison of different implementations of the score field for fields defined
on S2. (a) Functa (Dupont et al., 2022a). (b) GASP (Dupont et al., 2022b). (c) DPF (ours).

AFHQ (Choi et al., 2020)

FFHQ (Karras et al., 2019)

LSUN Church (Yu et al., 2015)

Figure 16: Additional results on image datasets. We show generated results using DPF on
AHFQ (Choi et al., 2020), FFHQ (Karras et al., 2019) and LSUN church (Yu et al., 2015) data at
32 × 32 resolution. Face images are generated from DPF, i.e., we do not directly reproduce face
images from FFHQ (Karras et al., 2019).

compared to GANs. Existing work accelerates sampling (Song et al., 2021a) trading-off sample
quality and diversity. We highlight that improved inference approaches like (Song et al., 2021a) are
trivially integrated with DPF.
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Figure 17: Videos of generated spherical results. View with Adobe Acrobat to see animations.
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