
Jiatao Gu

January 22, 2020

3

Low-Resource and Multilingual NMT

Flexible Representation and Efficient Decoding for NMT

End-to-end Simultaneous Speech Translation

Towards Better Understanding & Interoperability of NMT

4

Low-Resource and Multilingual Neural Machine Translation

• Improved Zero-shot NMT (Gu et al. 2019, ACL 2019)

• Multilingual NMT with Byte-level subwords (Wang et al. 2019, AAAI 2020)

• The Source-Target Domain Mismatch Problem in NMT (Shen et al. 2019, submitted to

TACL 2020)

• Multilingual Denoising Pre-training for NMT (arxiv today)

5

Flexible Representation and Efficient Decoding for NMT

• Insertion-based Generation (Gu et al. 2019, TACL 2019)

• Levenshtein Transformer (Gu et al. 2019, NeurIPS 2019)

• Generation with Adaptive Computational Time (Elbayad et al. 2019, ICLR 2020)

• Parallel Machine Translation with Disentangled Context Transformer (Kasai et al. 2020, to ICML2020)

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder
Classifier

Token
Classifier

Deletion
Classifier

Token
Embeddings

Position
Embeddings

Classifiers

Delete Tokens

Insert
Placeholders

Fill-in Tokens

6

End-to-end Simultaneous Speech Translation

• End-to-End AST with Indirect Training Data (Pino et al. 2019, IWSLT 2019)

• Simultaneous Speech Translation (Ma et al. 2019, submitted ICLR2020)

• Multilingual Speech Translation (submitted to LREC2020)

• …

Welcome to

participate!

7

Low-Resource and Multilingual NMT

Flexible Representation and Efficient Decoding for NMT

End-to-end Simultaneous Speech Translation

Towards Better Understanding & Interoperability of NMT

9

Model:

• Encoder/Decoder → RNNs (before 2018) / Transformers (now)

• We model the conditional probability in autoregressive factorization.

Attention Mechanism

Autoregressive ≠
Recurrent/Recursive

10

Data:

• Parallel corpus (sentence-level aligned)

• Weakly supervised corpus

• Monolingual corpus → semi-supervised/unsupervised learning

Attention Mechanism

11

• Training: maximum likelihood training

Attention Mechanism

• Decoding: greedy / beam-search

12

• Knowledge distillation (Liang et al., 2008; Hinton et al., 2015) was originally proposed for training a weaker student

classifier on the targets predicted from a stronger teacher model.

• A typical approach is using the label probabilities produced by the teacher as “soft targets” (dark knowledge)

𝑞𝑖 =
exp(𝑧𝑖/𝜏)

σ𝑗 exp(𝑧𝑗/𝜏)

• In the context of sequence generation, Kim & Rush (2016) extend this idea using “hard targets” from a teacher

generation model. More precisely, 𝑞 𝑡 𝑥 ≈ 𝕀{𝑡 = argmax𝑡∈Τ𝑞(𝑡|𝑥)}:

13

A Teacher-Student Framework in Three Steps:

(1) Train a teacher model with golden targets.

(2) Generate new targets with the pretrained teacher.

(3) Train the student model with the generated targets.

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

𝑋, _ ∼ 𝐷′

14

Questions:

(1) How to choose the teacher/student models?

(2) What kind of data can we use for distillation?

(3) In fact, why and how does distillation work in

generation?

w/ Chunting Zhou and Graham Neubig

ICLR2020

16

Standard NMT systems are autoregressive (AT model):

𝑃 𝑌 𝑋 =ෑ

𝑡=1

𝑇

𝑃(𝑦𝑡|𝑦1:𝑡−1, 𝑥1:𝑇′)

Non-autoregressive Translation (NAT model) predicts sequence generation

in parallel:

(Figure from Gu et.al, 2017)

𝑃 𝑌 𝑋 =ෑ

𝑡=1

𝑇

𝑃(𝑦𝑡| 𝑥1:𝑇′)

• Fast: An alternative solution where we predict all the target tokens in

parallel which is favorable for parallelism.

• Weak: It is harmful to assume all the output tokens are completely

independent.

• Strong: Autoregressive model (e.g. Transformers) can in theory

model any arbitrary distribution of sequences.

• Slow: we need to predict one word and a time during inference.

Our major contribution is still at the “modeling side”:

• Iterative-based Parallel Refinement (a Markov Decision Process)

• For each iteration, we extend the model by considering “deletion” and

“insertion” as the basic operations.

• Both insertion and deletion operations are “non-autoregressive”!

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder
Classifier

Token
Classifier

Deletion
Classifier

Token
Embeddings

Position
Embeddings

Classifiers

Delete Tokens

Insert
Placeholders

Fill-in Tokens

• Encoder-decoder attention

was omitted.

• The parameters of three

passes can be shared.

• We also propose to "Early

Exit" which attaches the

classifiers to an intermediate

block instead of the last to

save computation.

19

In practice, it is always helpful to obtain some forms of intermedia representation

Z to capture the ignored dependency between output tokens in NAT.

For instance,

Two types of NAT-based models are often considered:

• 𝑍 as standard discrete/continuous latent variables (VAE-based NAT)

-- https://arxiv.org/abs/1803.03382

-- https://arxiv.org/abs/1909.02480

…

• 𝑍 as intermedia partial generation (Refinement-based NAT)

-- https://www.aclweb.org/anthology/D18-1149/

-- https://papers.nips.cc/paper/9297-levenshtein-transformer.pdf

…
(Figure from Gu et.al, 2019)

𝑃 𝑌 𝑋 =

𝑍

𝑃 𝑍 𝑥1:𝑇′ ⋅ෑ

𝑡=1

𝑇

𝑃 𝑦𝑡 𝑍, 𝑥1:𝑇′)

https://arxiv.org/abs/1803.03382
https://arxiv.org/abs/1909.02480
https://www.aclweb.org/anthology/D18-1149/
https://papers.nips.cc/paper/9297-levenshtein-transformer.pdf

20

As one of the most successful tricks, KD has been used in *almost*

all existing NAT models.

• Typically, the student is our targeted NAT model, while we

choose the teacher an autoregressive model (AT).

• As discussed earlier, we can assume “teacher” is much stronger

than the student to model the data.

• Both teacher and student models are trained on the same

source sentences.

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

<<

21

Here is the example performance w/ and w/o distillation for NAT models.

• Test set BLEU on WMT14 English-German (En-De)

• All three models distilled from the same AT Transformer with BLEU score of

27.13 on WMT En-De.

How does knowledge distillation improve NAT models so much?

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

<<

22

The original NAT paper (Gu et al, 2017) argues the fundamental issue for non-

autoregressive models as the multi-modality problem in the data:

For example:

Our assumption is that distillation helps to reduce the multimodality in the data.

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

23

When things are unclear and too difficult to explain in sequence generation (e.g.

machine translation tasks), it is always a good idea to look at some toy cases.

• We create a synthetic dataset compared with three language pairs -- English-

German (En-De), English-French (En-Fr) and English-Spanish (En-Es) – from the

Europarl corpus. We make sure every English sentence will be aligned to ALL

three languages, and no language ID was specified.

• We train both AT and NAT models directly on this synthetic dataset. During

inference time, we input the English sentence without telling the model which

language to be output.

We manually created the multi-modality

(language id) in the data.

24

(a) AT baseline. (b) NAT baseline. (c) NAT trained on reduced

mode by random selection.
(d) NAT trained on distilled

data set.

We visualize the mode of “language ID” from the decoded outputs by a simple approximation:

• Decoding from autoregressive model prefers to select ``modes” over data.

• Non-autoregressive translation fails to capture the mode of language types.

• Training on mode-reduced data set, NAT starts to select one mode in the output,

but distillation is a more systematic way of mode selection.

25

Inspired from the visualization on toy data, we propose to use “data uncertainty”

to measure the multi-modality (complexity) for general purpose.

For simplicity, the data uncertainty is calculated by fitting an alignment model (we

use fast-align) and compute the average of token-level conditional entropy.

Align table obtained from

the alignment model

The corpus level complexity is a simple average of the token-level conditional

entropy over the vocabulary.

26

Complexity (𝐶(𝑑)): 3.67

(a) AT baseline. (b) NAT baseline. (c) NAT trained on reduced

mode by random selection.
(d) NAT trained on distilled

data set.

Complexity (𝐶(𝑑)): 3.30 Complexity (𝐶(𝑑)): 2.64

In practice, only measuring the complexity of the dataset is not enough for distillation

data.

For distilled dataset, we also propose to measure the “faithfulness” which reflects to which

extend, the distilled data is representative to the original parallel dataset.

• We compute the KL-divergence of the alignment models between the real (r) and the

distilled dataset (d)

27

We perform an extensive study over a variety of NAT and AT models with the proposed

tools to analyze the complexity and faithfulness of the distilled dataset.

• Dataset: WMT14 English-German (En-De)

• Models and baseline scores (w/o distillation):

weak

strong

weak

strong

28

Analysis of the distilled dataset

• We visualize the complexity and faithfulness of our all 4 AT models (tiny,

small, base, big) as well as the real data.

• As additional supporting metrics, we also plot the BLEU score (compared to

the real data), showing it also correlates the data quality well.

29

Analysis of the distilled dataset

• As additional supporting metrics, we also plot the fuzzing reordering score

for each dataset (Talbolt et al. 2011). A larger fuzzy reordering score

indicates the more monotonic alignments.

The distilled data

looks much more

monotonic to the

English word order!

30

Analysis of the distillation strategies

• In default, we take the beam-search output from the teacher model to

create the distilled dataset. Will different decoding approaches affect the

quality of distillation?

YES. We must use beam-search (or

at least greedy decoding).

31

Analysis of the NAT models

• Next, we show more results with different NAT models v.s. AT teachers are

shown below. We always put the AT teacher scores (in red) for reference.

weak

strong

weak strong

32

Analysis of the NAT models

• The stronger the NAT model is, the closer it is to the AT teacher;

• The teacher model does not have to be the upper-bound of the student (we

will also come to this question later)

weak

strong

weak strong

33

Analysis of the NAT models

• All NAT performance curves give the same pattern: when increasing the capacity of the

teacher model, distillation results first improve and then drop.

• The best performance of NAT models – from lower capacity ones to higher capacity ones – is

achieved with distilled data of lower complexity to higher complexity

weak

strong

weak strong

There is a lesson that we

should choose the suitable

teacher model (not too strong

or too weak) according to the

student model’s capacity!

34

Improvements for WEAK student models

• Take the vanilla NAT model as an example.

Born-Again Networks (BAN):

• Based on previous discussion, weak models require to be trained on simpler

data. However, decreasing the size of the teacher model (e.g. base -> small)

will hurt the faithfulness of the distilled data;

• BAN instead is a simple solution: it repeatedly distill the teacher model by its

own output for multiple iterations and use the final output to train the

student model.
N iterations

Distilled from the same

model will not affect the

BLEU score.

35

Improvements for STRONG student models

• Take the Levenshtein Transformer model as an example.

Sequence-level Interpolation (Seq-Inter):

• Based on previous discussion, strong models can be trained on more difficult

data with high faithfulness. However, it requires training much stronger

autoregressive teacher models (which is not easy) ;

• Kim & Rush, 2016 in fact also proposed improved version of distillation

named sequence-level interpolation, where we choose the K-best beam

search results and re-rank to select the sentences with the highest sentence-

BLEU score from the ground-truth.
K-best

Re-ranking

However, in practice this

approach is very sensitive

to the beam-size.

Code for most of the NAT models can be found in Fairseq-py

https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation

https://github.com/pytorch/fairseq/tree/master/examples/nonautoregressive_translation

w/ Junxian He, Jiajun Shen and Marc’Aurelio Ranzato

ICLR2020

38

• To answer the second question, we analyze how distillation works

when introducing more data. We keep teacher and student the

same architecture.

• In literature, such special setting of knowledge distillation is also

called “self-training”.

• Different from the previous part, we usually need to “fine-tune” the

student model on the real data (𝐷) again (green arrow).

• Furthermore, the fine-tuned student model can be treated as a new

teacher, and we can repeat this loop multiple times, resulting in

Iterative Self-Training.

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

𝑋, _ ∼ 𝐷′

|𝐷′| ≫ |𝐷|

=

39

How does self-training works in practice?

• Test set BLEU on a subset of 100K parallel sentences from WMT14

English-German (En-De).

• Even with the equal size teacher/student, the performance of the

student is still improving by many iterations!

• The student trained only with distillation data, can usually outperform

its teacher!

• Fine-tuning on real data further boosts the translation quality,

providing a better teacher model for the next iteration.

Teacher

Model

Teacher

Model

Student

Model

�

�

�

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

*Pseudo-train: training on the distilled dataset.

40

We examine two possible

hypotheses:

• Decoding Strategy

The first possibility is that the gain comes from the “better” target.

• Typically, we always use “beam-search” instead of “sampling” from

the teacher model’s own distribution.

• The beam-searched targets serve as a “stronger” teacher model than

the student.

The decoding strategy do affect the performance, however, is not the

only secrets behind the improvement.

Teacher

Model

Teacher

Model

Student

Model

�

�

�

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

41

We examine two possible

hypotheses:

• Decoding Strategy

• Noise during Training (Dropout)

The second assumption comes from the mismatched behaviors of

“training” and “inference”:

• Dropouts are usually turned-off in the inference time, while open

during training ➔ self-training is not really “self”.

Improvements disappeared on the pseudo-training phase!!

Teacher

Model

Teacher

Model

Student

Model

�

�

�

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

42

Since we found “noise” during training useful, what if we add more?

• Injecting synthetic noise in the input words, e.g. word swap, word

deletion and word blanking (Lample et al., 2018).

• Injecting noise will not improve the pseudo-train results (should be

expected as neither the source or the target are “REAL” sentences.

• However, injecting noise largely improve the performance on fine-

tuning!

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋*

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

𝑋, _ ∼ 𝐷′

|𝐷′| ≫ |𝐷|

Inject

Noise

43

Since we found “noise” during training useful, what if we add more?

• Injecting synthetic noise in the input words, e.g. word swap, word

deletion and word blanking (Lample et al., 2018).

• We also try using “round-trip” paraphrase instead of synthetic noise,

however, the improvements are similar.

What is the role of “noise” in Self-training?

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋*

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

𝑋, _ ∼ 𝐷′

|𝐷′| ≫ |𝐷|

Inject

Noise

44

When things are unclear and too difficult to explain in sequence generation,

it is always a good idea to look at some toy cases.

• Summing two integers in 0~99 as a sequence generation task;

• Model works in the character level.

• We use only 250 pairs to training this task.

One good feature of this summing task is that we can easily visualize the

results in a 2D space. For example:

1 1 2 3 Model 3 4

45

Quantitative Analysis for Noisy Self-training*

1 1 2 3 Model 3 4

*Detailed definition of these metrics can be

found in the paper.

Qualitative Analysis for Noisy Self-training

The injected

noise will

smooth the

output space!

46

Teacher

Model

Teacher

Model

Student

Model

�

�

� *

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

Inject

Noise

We validate the proposed noisy self-training methods on both machine

translation (MT) and text summarization (TS) tasks.

Machine Translation task:

• WMT14 English-German (En-De):

simulated low-resource MT (100K) + 3.8M English (from the remaining)

full parallel data (3.9M) + 20M English (sampled from News Crawl)

• FloRes English-Nepali (En-Ne)

real low-resource MT (560K) + 5M English (sampled from Wikipedia)

• All noisy ST are performed 3 iterations. We also build up back-translation baselines

for comparison with target side monolingual data.

47

Teacher

Model

Teacher

Model

Student

Model

�

�

� *

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

Inject

Noise

We validate the proposed noisy self-training methods on both machine

translation (MT) and text summarization (TS) tasks.

Text Summarization:

• English Gigaword dataset

simulated low-resource TS (100K, 640K);

full data (3.8M) + 4M monolingual documents (from the filtered Gigaword

dataset)

• All noisy ST are performed 3 iterations. We also build up back-translation baselines

for comparison with target side summarizations.

48

Teacher

Model

Teacher

Model

Student

Model

�

�

� *

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

Inject

Noise

• Take the simulated WMT14 En-De data as an example:

Analysis of Dataset Size for Noisy Self-Training

v.s. parallel data size

v.s. monolingual data size

(Fixed 20M News

Crawl monolingual)

(Fixed 100K parallel)

49

Teacher

Model

Teacher

Model

Student

Model

�

�

� *

�

� *

� *

Loss

Decode

Loss

� , � ∼ �

� , _ ∼ �

|� | ≫ |� |

Inject

Noise

• Take the simulated WMT14 En-De data as an example:

Analysis of Noise-level injected in Noisy Self-Training

We vary the ratio of “word blanking” when

injecting the noise.

Not surprisingly, the performance of self-

training drops a lot if the noise is too large.

50

• Take the simulated WMT14 En-De data as an example:

WAIT… one step back? What if we do not have new

data, but inject noise onto parallel data?

Teacher

Model

Teacher

Model

Student

Model

𝑋

𝑋

𝑋*

𝑌

𝑌*

𝑌*

Loss

Decode

Loss

𝑋, 𝑌 ∼ 𝐷

=Inject

noise

• If following the same process as noisy self-training, only with parallel

data still improves the performance (not as much as with

monolingual data)

• However, if we only inject noise onto the source side, with real

sentence as the targets. The model will get much worse

performance.

Can we combine these two work?

• For instance, training a teacher AT model on limited parallel data;

• Distilled the model on much more monolingual data to train an NAT

model

How can we get rid of distillation?

• For instance, GAN-style training for NAT models to handle

multimodality

What is the best way to find the noise level for self-training?

• For instance, can we use meta-learning to learn to inject noise?

Check out our

paper tomorrow

morning!!!

We are also hiring Research Interns, AI Residents and Full-time Researchers at FAIR!

Let me know if you are interested!

jgu@fb.com

