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Non-Autoregressive Sequence Generation

(Part |: Introduction)
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Neural Sequence Generation

* Many real-world applications can be seen as sequence generation!
* We can transform any structured data into sequence
* For instance, speech as wave sequence; images can be flattened into pixel sequences, etc.
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Autoregressive (AR) Sequence Generation

* Generate sequence token by token in an autoregressive way

A B C D E EOS
| 1 1 [ | |

Decoder

* Factorize the joint probability in a chain rule

n

n
p(x) = Hp(il?z'|£l?1, T2y .00y Tinl) = Hp(a?i\xq')
i=1

1=1

* Has been poplar in many sequence generation tasks (NLP, speech, CV)
* Can be implemented with RNN/CNN/Transformer
e Can be unconditional (a single decoder) or conditional (encoder-decoder)
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Popular models in AR: Transformer & LLM

* Transformer (2017)

* Unleash the modeling power by removing the inductive
bias in RNN and CNN

through QKV attention

QK'
V.

* Has become the model backbone for NLP, Speech and CV

Attention(Q), K, V) = softmax( 1%

* GPT-1/2/3

* Large-scale pre-training models using autoregressive
Transformer
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Transformer & LLM

e Zero-shot / One-shot in-context learning with LLM

Zero-shot One-shot
In addition to the task description, the model sees a single

The model predicts the answer given only a natural language ks O e Suek. Mo, griciant ideties s parianmied.

description of the task. No gradient updates are performed.

Translate English to French: task description
Translate English to French: task description N e e Yot re e PR
cheese => prompt cheese => proimot

* Multi-modal generation (DALLE-1)

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

m
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Then, why do we want to explore other alternatives

Why do we care?

Text generation models are mostly autoregressive
Each step needs a forward pass of deep Transformer layers.

generacion
A

Transformer Encoder >{ Transformer Decoder

efficient Iang:uage gene:ration l <s>
(a possible illustration)

N Meta Microsoft

10



AR model is slow

Inference time linearly grows with sequence length

Inference Time

100 200 300 400 500 600 700 800 900

Time consuming in real-time scenarios, especially for long text/speech/image sequence
Text: 10~100
Speech: 500 for spectrogram or 80K for waveform for a 1s speech
Image: 65536 (256*256) for pixel and 256 (16*16) for tokens

11
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Harmful biases in AR generation

Exposure bias

Exposure bias: ground-truth tokens are taken as input in training (teacher-forcing), but predicted
tokens are taken as input in inference (free-run)

Error propagation: later tokens will be affected by the accumulated errors in previous tokens

Label bias

The normalization constraint over vocabulary items at each decoding step in autoregressive
models poses a harmful inductive bias which leads to learning miscalibrated distributions over

tokens and sequences

Order bias

Left-to-right generation may not be the best order for generation, or some data prefers no order

N Meta Microsoft
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Non-autoregressive Text Generation

- Can we synthesize text in parallel like typical image synthesis?

- We propose the first non-autoregressive translation (NAT) model, which
builds on top of Transformer.

Transformer Encoder oo »{ Transformer Decoder

4 A 4 A ' A 4 A /

efficient language generation | <m> <m> <m> <m>

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive

neural machine translation. ICLR 2018

N Meta Microsoft
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Evaluation protocol

16 -

Standard benchmark: 14
Machine Translation, WMT14 En = De 1]

(=]
1

Quality measure £
=
BLEU score °
Efficiency measure &
Latency (GPU batch=1,
batch=full and CPU batch=1)

Quality-efficiency trade-off figure

Microsoft

How can we compare the performance between AR and
NAR systems?
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Why is NAR difficult?

- The original NAR system is far from the AR baselines.

Wi akzeptieren das vollkkommen . N
o * A A 4 * Translation
a ‘ ) SoftMax| [SoftMax| |SoftMax| [SoftMax| |SoftMax Predictor
Models BLEY AR . . ... -
Predictor [SoftMax] [SoftMax] [SoftMax] [SoftMax] [SoftMax] 4 MLP || MLP || MLP || MLP || MLP h
A Y 1
Autoregressive Baselines 27.48 - e S - Mm;ead I:te,_m:ﬁm | Soeer
Encoder / A A 4 A 3
NAT 17 69 Stack MLP || MLP || MLP || MLP || MLP Multi-Head Positional Attention —@
- N G N N O SO SO S SO O e =
Multi-Head Self-Attention Multi-Head Self-Attention
} 7'y 7'y 7'y r'y A
NAT with reranking 19.17 N - Zn
@—»- Emb][Emb][Emb][Emb][Emb e Emb][Emb] Emb || Emb || Emb 4-@

We totally accept it . We totally accept accept

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive

neural machine translation. ICLR 2018
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Why is NAR difficult?

Typical errors made by a NAR system: Vielen D ank \/
Repetitive tokens (over generation) D anke schon ./
Shorter or broken sentences (under generation) Thank you = D anke /

Influent sentence (no/weak language model)

D anke D ank *

Fundamental issue: Vielen schon *

The independence assumption in the output space
ignores the real dependency between target tokens.

Real target

. w :
Maximum-likelihood training force to cover all data is “multi-
possible modes modal”

QOMeta g% Microsoft g



Why is NAR difficult?

Vielen Dank /

D anke schon /
Thank you =

P(Vielen) * P(Dank|Vielen) * P(<eos>|Vielen Dank) Danke '/
P(Danke) * P(schon|Danke) * P(<eos>|Danke schon) Danke D ank *

Vielen schon *

How AR system solve this problem?

AR model explicitly models the dependency in the
target space. Generation is to make choice at each
step and affect the next choice.

P(Vielen) * P(Dank)
P(Danke) * P(schon)

N Meta Microsoft



How can we improve NAR models to match
AR systems?

Data Preparing

B ) How can we further improve NAT?

Knowledge

Distillation MDdEI o
Data = reduce the complexity

— o Finetune Model -2 increase the capacity

Loss —> resolve uncertainty
Learning > ease the training difficulty

Encoder Input Modeling and Training

LEEE ) e
Variabe

Predictor Latent Variables
NAT
Length Length
Encod = Predictor Embedding
S —
Encoder Output Module

Xiao, Y., Wu, L., Guo, J,, Li, J., Zhang, M., Qin, T. and Liu, TY., 2022. A Survey on Non-Autoregressive
09 Meta =. Microsoft Generation for Neural Machine Translation and Beyond. arXiv preprint arXiv:2204.09269. 18



Non-Autoregressive Sequence Generation

(Part II: Methods)
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A principled goal

* The main challenge of NAR generation is “failure of capturing the target side
dependency”.

* Qverall instructions:

Methods _____| Overallinstructions

Model architecture Improve the model’s capability of capturing target-side dependency
Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Additional techniques that improve the final performance

QOMeta F% Microsoft 20



Model Architecture

Fully NAR How to generate How to incorporate
Models the output? latent variables?

Length

. predictors
Partially NAR

models
NAR NAR

Sequence
Locally AR Generation
models

models Intermedia
with Latent predictors
variables

Iteration-
based NAR
models

Semi-Autoregressive

QOMeta F% Microsoft 21



Fully NAR Models

YiY2 YT

* The simplest way of generating tokens in parallel.
* Time complexity: O(1)
* Pros:
e Simple to implement

* Fastest decoding
e Easy to incorporate other improvements.

Decoder

[mask][mask]...[mask]

Encoder

* Difficulties:
* Relatively worst performance X1 X3 X3 e XTg

 CANNOT handle target token dependencies without
other improvements

* Hard to work well on LONG sequences.

OQOMeta g% Microsoft



Example 1: vanilla NAT model

* Following the initial work, we can
simply implement such vanilla NAR by

removing causal masking in the — Vielen Dank
Transformer decoder. r r
* Inputs to the decoder: e oaer NAR
* Special mask tokens Encoder R
* Soft-copy of encoder’s hidden states or
embeddings
+ SoftCopy + +
* Naive implementation is very bad: Thanks a lot — ™

e ~10 BLEU on raw dataset.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive

neural machine translation. ICLR 2018
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Fully NAR model + tiny AR layer

As a special case, fully NAR systems can be significantly improved by adding a
small AR layer in the output. It will help to model the “missing” target side
dependency without sacrificing too much on latency.

It is technically autoregressive, while most of the computation is done in the NAR
part. In this sense, it is very different from typical Transformer-based models.

Tiny AR layer can be:
N-gram LM
CRF
Tiny RNN (e.g. ,1-layer GRU or SRU)

00 Meta Microsoft 24



Example 2: NAR + CRF layer

N Meta

By adding the conditional random fields (CRF)
on top of the original NAR model’s output, it
considers the dependency of the neighbors:

T

1 - TL -
P(y|z) = 7@ =P (Z s(ir 2. 1) DY tHyio1,yi,.0)
1=2

1=1

Apply low-rank/beam approximation to make
the transition feasible for large vocabulary.

Decoding is sequential but much faster than
typical AR models.

a" Microsoft

'

"
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Multi-Head
Self Attention

S e e
DD

GG

Z.Sun, Z. Li, H. Wang, D. He, Z. Lin, and Z. Deng, “Fast structured decoding for
sequence models,” NeurlPS, vol. 32, pp. 3016-3026, 2019.

-
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Partially NAR models

* AR at sequence level, output multiple tokens in parallel
* In the middle between AR and fully NAR models
* Time complexity: O(N/K) (K is the segment length)

* Pros:
* Produce better performance
* If tuning properly, it can achieve the same performance as AR

» Difficulties:
* Globally still AR, it did not change the linear complexity
e Speed-up is small

OQOMeta g% Microsoft

Y1Y2 Y3Va

Decoder

<S><S> V1V, ...

Encoder

x1 xz X3 ...xTS

26



Example 3: n-gram decoding

* Decode multiple tokens in parallel (usually n-gram),
and then the overall sentence is still autoregressive.

[(m=1)/K]+1
ply-ualx)= ]  p(GGy...Gi1.x)

i—=1

* Relaxed causal mask: a block-wise attention which
can make max use of the decoded contexts.

1I-" Vo V Vi Vg -:.-:.1'5::-

\ \TQ\T\\

=5= Y3

‘L| '!r-l

1 0 0 0 0 0 1 1 0 0 0 07 D GdEr
1 1 0 0 0 0 1 1 0 0 0O 0
1 1 1 0 0 0 1 1 1 1 0 0
1 1 1 1 0 0 1 1 1 1 0O 0 ﬁ} . _1-'] .1_.2 .1_.3 .1_.4
1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 (1 1 1 1 1 1]
C. Wang, J. Zhang, and H. Chen, “Semi-autoregressive neural
N Meta = Microsoft machine translation,” in EMNLP, 2018, pp. 479-488 27




Example 4: Block-wise decoding

* A dynamic approach compared to Due to the use of AR
“fixed” n-gram prediction... teacher for verification, the = Su—_—G—_—m
model’s performance is

* The model has three stages: SURIENITEEE! ST HTOGEE HiE
* Prediction: each step the NAR mode AR models, while achieving

predict an n-gram block. 3x-4x speed-up! 1B e

* Verification: compare the predi
NAR model, and the AR teacher’s
prediction in a teacher forcing matter.

* Accept the sequence with longest match
and move to predict next block.

executed
in parallel

Stern, M., Shazeer, N. and Uszkoreit, J., 2018. Blockwise parallel decoding for deep
QOMeta F% Microsoft i i i i
elda g ICrOSO autoregressive models. Advances in Neural Information Processing Systems,»31.



Locally AR models

* NAR at sequence level, output each segment in AR

* In the middle between AR and fully NAR models
Time complexity: ~O(K) (K is the segment length)
Also have similarities to NAR + tiny AR layer.

* Pros:
* Produce better performance

* Motivated by the fact the NAR models deal with local
dependencies badly, e.g., repetitive words.

» Faster generation compared to previous type

Difficulties:

* Need complex algorithm to merge the output or resolve
conflicts between each position.

OQOMeta g% Microsoft

PRI
A9

Decoder

[mask] [mask]

Encoder

x1 xz x3 "'sz
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Example 5: Neural Phrase-based Translation

. Output sequence you really want to make
* Pre-transformer era work, still based on RNNs. I ppmmpmmmgrmmepeeee s ;
| 1 . E
(" Bi-directional RNN I | ‘ E
— T siewirkiich wollen treffen |
* Similar to traditional statical machine LR \ P, |
translation, model is learned to translate Dt W) L 7~
phrase independently with local RNNs. loput sequence i wolle virkich richtig treffen
* Merging phrases need to run dynamic s ;
programming (DP) which limits its application
to high-resource domains. 0
[ Soft reordering + Bi-directional RNN l
f FF T 7 f 1
danke s aber das beste kommt noch
1 2 3 4 5 6 7 8
= . Huang, P.S., Wang, C., Huang, S., Zhou, D. and Deng, L., 2018, February. Towards Neural Phrase-
RN Meta = Microsoft based Machine Translation. In International Conference on Learning Representations. >°



Example 6: Local autoregressive translation (LAT)

* Similar to NPMT, this paper also learned to e e W e T
predict local sequence with a small RNN D e L o |
E e eememeeeneaens
|Oca”y. C : Ill‘?e berds <e?s> .
O —+ pos2 —— BN { RNN > RNN }
D L o o oitts,
E e sop> ... ke LD e .t
* No DP needed, but a heuristic merging R I S s
. . ~ pos3 —+( RNN - RNN ( RNN
operation based on longest common string i T T
between two positions. T

sl s2

going to study here  will study in the

Les: T~

e Different from NAR + tiny RNN, it is still “going 0 study] | here
constant time. Because of the local AR, it reoe [ E“idy Inthe.
can mostly remove artifacts like repetition. ConI S going to study in e

X. Kong, Z. Zhang, and E. Hovy, “Incorporating a local translation mechanism into non-autoregressive

00 Meta Microsoft translation,” in EMNLP, 2020, pp. 1067-1073



Iteration-based Models

Y1 Y2Y3 YT

* Generate/refine the sequence iteratively. For eack
iteration, the sequence output in based on I\
Due to time limits, we only

introduce some classical
* Time complexity: O(K) or O(logN) (depending _ _ ]
methods to use) models in this categories.

e Pros: We refer the readers to the

* General and simple to implement. Thec"'*‘ reading list for more and

extension of fully NAR models. ‘\‘\ recent approaches!
* Best performance so far for NAR MiC®€(s;

 Difficulties:
* Trade-off between quality and latency.

* The speed-up advantage challenged by “Deep encoder,
shallow decoder”.

. Kasai, J., Pappas, N., Peng, H., Cross, J. and Smith, N.A., 2020. Deep encoder, shallow decoder:
QN Meta = . . . . . . .
€9 = Microsoft Reevaluating non-autoregressive machine translation. arXiv preprint arXiv:2006.10369.



Example 7: Mask-Predict

* Following similar training tasks of BERT

(masked language model), we can directly r—*EF Vielen
use the mask prediction model for iterative | )
generation. S tertion | ONAR
Encoder —| Decoder
e BERT training 15%, while CMLM is trained u A $
Thanks a lot <mask>Dank

by randomly masking 0~100% tokens.

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805.

N Meta

Microsoft M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of condltlonglgmasked

language models,” in EMNLP-IJCNLP, 2019, pp. 6112-6121.



* The BERT-style training did not tell
us how should we inference in the sre _ Der Abzug der frag

testing time. Only keep the most confident

* Asitis just forcing the model to tokens in early iterations, and
predict the masked tokens from the

remaining gradually expand the number
' of words kept.

» Skeptical decoding -- an annealing- :
based method was used for CMLM has a strong connection

: : ) ' - |
iterative translation to diffusion-based models!
* Set the target iteration T. ‘
([

a
2
* Start with all masks; §15 % mEm
: : o -
* For each iteration t, make the bk ". o o
prediction, and then mask (1-t/T) * N o b =1 o 5=
. X
tokens with lowest scores. o e meo ses a0 s amo

Performance (BLEU)

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of conditional masked
00 Meta =I Microsoft language models,” in EMNLP-IJCNLP, 2019, pp. 6112-6121.
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Example 8: Insertion Transformer

Parallel generation:

* There is not only one way to perform
iterative generation. Sentence can also be
composed by insertion!

Canvas Insertions

[] (ate, 0)

[ate] (friends, 0), (together, 1)
[friends, ate, together] (three, 0), (lunch, 2)
[three, friends, ate, lunch, together] ((EOS),5)

d b — | T

* Mask-Predict is constrained to know
(predict) the length before generation, while three @ lunch o
with insertion, it is possible to generate . 4 Y &
sequences in any lengths during iteration.

Insgrtion Transfarmer Decoder

* Generation terminates if all positions are

1 . . . <S> . <fe>
not insertable. The complexity is logarithm. s> friends ate together </s

M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, “Insertion transformer: Flexible sequence

generation via insertion operations,” in ICML. PMLR, 2019, pp. 5976-5985

N Meta Microsoft 36



Example 9: Levenshtein Transformer (LevT)

(] With One Step fu rther’ LeVT <s> a cat sat on the mat </s>
combines insertion & deletion, | o= Ao e ]
which means the model can i B B

. _ i
freely edit over the generation, Pltedeteteleleleiletetetateieleielety /';';5;"'[;(.;{';a';';su;;"'@Lgi"'.ﬁga";,;;;';;s;;
change the length and ;( e J; T LI I
terminate the iterationin a | : P Rl Lovenshtein Transformer
dynamic Way. i( Transformer Block_2 ji ;Litrja_t;l;;:
i ( Transformer Block_1 j E
- f 'T ete loKens Lo f ___f___f _____
* For each iteration, it contains encesares (2] [12] [ [ot] L] (=] e e
trtee [0 [ M [ [ LLLLT
three forward passes: <> ot st mat s>

* Parallel deletion
* Parallel insertion (predict # of

masks, mask prEdICtlon) J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurlIPS, vol. 32,
09 Meta =l Microsoft pp.11181-11 191, 2019 37



. LevT is trained through imitation learning,
with a dual policy (simplifie version):

Learning to insert tokens by predicting
random deletion;

Learning to delete tokens by fixing errors
made by insertion; Figure 2: The data-flow of learning.

. The expert action are automatically
generated based on Levenshtein distance
with ground-truth.

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurlIPS, vol. 32, pp. 11

N\ Meta Microsoft 181-11 191, 2019 .



N Meta

An example of iterative refinement using LevT:

(a)

;

_The _t

o

__the __reverse _deformation .

00 _hig.h __rotation -_rspee”d _producésr

— _UHUL, BEImEENKRETER L, FATOERHIEL S,

(iteration 1) nothing to delete >>

insert >>

delete >>

insert >>

) . nothing to delete >>
(iteration 3)

insert >>

nothing to delete, nothing to insert >>

—Some __possible __structures __and __circuits
were __proposed __and __verified .

[_EE&EEEG[TELs S EIERRINECB]. ]

[FEEkEinlo =18 CENZRRIAEC B ]
IEeElizEs e =1z ], RIERINMECS], ]

[_E&GIEREANTEN5 &1, EIEFIDELCB]. 1 |
[EGIEENElTELs &), EIEFIPEUB]. ]

[Terminate]

> _WLKDOHDAEERMBIE L B ZRE URREE UTE, !

(iteration 1) nothing to delete >>

insert >>

delete >>

insert >>

[_IAgeal@ElmglEglzezull, IRELl. ]

[ gera]i@EtEmglmElzRzE UL, IREucl. | ’
[_IW<OhollAgERlEEs [EElzR=ECVL IMRELEIL. ]

nothing to delete, nothing to insert >>

T N S S S i Pl X e P i s

Microsoft

.

B [Terminate] ‘

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurlIPS, vol. 32, pp. 11

181-11 191, 2019
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Speed-up of LevT compared to CMLM (constant time) and
Insertion Transformer (logarithm time)

12
* LevT Translation
! —+— Logarithm Time
1(] %—%WWW—.— LinearTimE a

=== Constant Time (4)
—+— Constant Time (10)

e
o 8
e
E R JL.-\_J\__\.e.t
3 ) b ikl i
= i
5 © ’
@
o ay N ALK *ﬁt .
T 2 R R WL ;-----,;‘;w##t-ﬂ&-t*--ﬂ*tﬂ
c ot X, gy
* e T g ey
kg
2
0
80 100 120

QOMeta g% Microsoft

sentence length

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurlPS, vol. 32, pp. 11
181-11 191, 2019 40



Model Architecture

Fully NAR How to generate
Models the output?

How to incorporate
latent variables?

Length

: predictors
Partially NAR

models NAR

models Intermedia
with Latent predictors

NAR
Sequence
Generation

Locally AR

variables
models

Iteration-
based NAR
models

QOMeta F% Microsoft 41



Latent Variable Models for NAR generation

The concept of “latent variables” are very important for NAR!
The additional variables are used to capture unceg

: Suppose we only have
Ilteration-based models can also be seen as “late PP Y

three translation for this
sentence, and we
determine one mode first,

then the output can be
Why latent variables will be useful in NAR gener: generated in NAR!

All the intermedia decoding results can be seen
YO (all masks) 2 Y1 2 Y2 - ... 2 YT (target seg

Vielen D ank

D anke schon

D anke

Thank you

0O Meta =I Microsoft Latent variables .



Latent Variable Models for NAR generation

Normally, we need to marginalize the latent variables, or maximize the
evidence lower bound (ELBO):

Leipo = Eq(z|x)llog P(X|Z) +log P(Z)]| + H(q)

)

In practice, we can either choose to work on pre-defined “latent variables’
with some off-the-shelf predictor or learn everything jointly (e.g., VAEs).

N Meta Microsoft
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Length predictor

Most NAR systems at least have one “latent variable” — length

N Meta

AR model usually uses the special symbol <eos> to show the end of
generation, and the length is determined when the generation ends.

However, for most NAR models (except for CTC-based models) need to
pre-determine the “length” before NAR generation can starts. In this

sense, length itself can also be used to capture some dependency
information!

Vielen D ank L=2
D anke schon L=2

D anke L=1

Thank you

Microsoft
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Length predictor

Types of length predictor:

Training a separate classifier to predict the correct length
Using the encoder’s hidden states and pooling

Using specific [LENGTH] token in the encoder

Statistics

In some work, it is also possible to directlv use the dataset statistics
T'y=a T.+B

Mostly, B is the size of length beam, and it relies on the re-ranking.

N Meta Microsoft
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Intermedia predictors

It is a vague categories, which refers to modeling latent variables:
With clear definitions / meanings
Predictable given the target or source-target pairs

Off-the-shelf predictors are available (and typically fixed) to predict these
information

Not optimal, and the performance affected by the predictor.

Length can be seen as a special “latent variable” as we don’t need to separate
inference network to infer that.

N Meta Microsoft
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Example 10: Fertility predictor

. Fert|||ty how many words each L ) 4 V\;‘ir akze;;tieren d:s vollkcInmen ; R
il . [Translation
source token will be translated oy e o | [somed fsonved [sotme [sotw fsommand | e
. . . . A A A A T N Wy W S S
to, which is estimated by ety | L | e e s
[SoftMax] [SoftMax] [SoftMax] [SoftMax] [SoftMax] MLP || MLP || MLP || MLP || MLP
alignment tools. \ S , S, S, S, SN S
& ( ______W%—-p[ Multi-Head Inter-Attention Stack
e ) e e .
Fert|||ty Can aISO be predlcted M‘LP MI:P MI;P MI:P MI;P TI\r‘1ulti-l-:=ad Pos;tional A:emicm¢ d——Pgm
in a NAR way. Multi-Head Self-Attention Multi-Head Self-Attention o
N x\ / \ T i T i T /x N
. (: }—| Emb || Emb || Emb || Emb || Emb |-- —I‘-k~—+ Emb || Emb || Emb || Emb || Emb | <— : )
Bonus point: we don’t need L ][ ][ ][ ][ ) k ][ ][
We totally accept it . We totally accept accept

additional length predictor as

we can add fertilities together.
Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive

neural machine translation. ICLR 2018 .

N Meta Microsoft



Example 11: ReorderNAT

N Meta

Fertility can only partially help the
translation, while it is not possible
to handle reordering in MT.

ReorderNAT used an additional
module to predict reordering
(which can be either NAR or light-
weight AR model).

Ordering can also be obtained from

alignment tools.

/ i Encoder Module _\ ./ Reordering Module \\ / _ Decoder Module _ﬁ\‘
| want my friends thank -- : lch mochte meinem Freund danken
inter-Attention [ Softmax | i [ Softmax ]

I N P § ! :

Encoder Block xN ® J Decoder Block l xK Jiic Decoder Block |*xN-K

L 4 \L J J i\ i )
E)EIEI EI EI EI I C EI EI CIaRes EI CYEICI EY

| want to  thank my friends 1

-

Q. Ran, Y. Lin, P. Li, and J. Zhou, “Guiding non-autoregressive neural machine translation decoding with reordering

Microsoft

information,” in AAAI, vol. 35, no. 15, 2021, pp. 13 727-13 735
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NP1 VP3 <EOS>—y NP1 Cats vE3 sleep a lot

Example 12: SynST

(Autoregressive ) I (Single-Pass
Parse Decoder : Token Decoder
Add

Add &

other type of predictors in the middle of ==

4
—

. Similar to ReorderNAT, we can also plug-in o= —L

encoder and decoder. A3 e _

Self—Aﬂemlan S;Il—A:lient;n
SynST learns to autoregressively predict = GH” @*D E‘H
({high_levell’ Chunks USing a Iight-weight Katz: hllf iel (7(;15.‘-* ‘\-tgll ”tgq P11 MASK> "-’].33'(1“'“5_( MASE MBSE>

AR model, and then generate texts based
on these chunks.

k=3: NP3 VP3

k=2: DT1 JJ1 NN1
VBD1 NP2

Chunk information can be obtained from
a syntactic parser.

N. Akoury, K. Krishna, and M. Iyyer, “Syntactically supervised transformers for
faster neural machine translation,” in ACL, 2019, pp. 1269-1281.

49

QOMeta g8 Microsoft



Variational Autoencoders

Different from the previous case, such models are more general
Latent variables have NO clear definitions / meanings
Need to optimize both the generator and the encoder (and potentially
also the prior).

Basically, we can either model it with Continuous VAE or Discrete VAE.
Both have pros and cons.

N Meta Microsoft
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Example 13: Continuous VAEs (LaNMT)

. One way is to model the late

] Y
standard continuous VAE However, the mean
i . vectors are usually not T
Gaussian prior. the best choice. S Transformer
The prior is TOO simple Decoder
to capture complex
logpﬂ(ylx) = log pﬂ(Z| dependences! iorence. atsiey) t
. Network ———=(71] (z2) [zB]—*dB
wd A
________________________ &
. Inference time: °
Transformer
- with mean / samples from the prior S—— Encoder
Decoder
1‘ + ;
Y X X

EE R. Shu, J. Lee, H. Nakayama, and K. Cho, “Latent-variable non-autoregressive neural machine translation with
N Meta = Microsoft deterministic inference using a delta posterior,” in AAAI, vol. 34, no. 05, 2020, pp. 8846—8853. o



Problem of simple VAEs

. Spherical Gaussian prior is typically too

weak to capture complex dependencies.

- The mean vector of the prior is usually far
from the posterior.

Iterative inference with delta posterior

Lo = Epw{.:hc} [3]
Yo = argmax, log pe(y|z, 2 = po)
fort «+ 1to1 do
[y = Eqﬂ[zlﬂ:;yz—l} [3]
Yy¢ = argmax, log po(y|x, 2z = py)
if y, = y;—1 then
break
output i,

R. Shu, J. Lee, H. Nakayama, and K. Cho, “Latent-variable non-autoregressive neural machine translation with

Z=u+0*n

/N

logo

X X

Inference  g(z|x,y)
Network

Y

?

Transformer
Decoder

A

—{z1) (z2] (B}

syl

) &) (

Transformer
Decoder

*

X

Transformer
Encoder

)
X

AN Meta =. Microsoft deterministic inference using a delta posterior,” in AAAI, vol. 34, no. 05, 2020, pp. 8846—8853.




Example 14: Continuous VAEs + EBM

As a follow-up, it is also possible
to train an energy function to
estimate gradients in the
continuous space.

The goal is to find z closer to the
posterior more efficiently!

Algorithm 1: Inference for Latent Variable
Models using Learned Gradients

Input : x, o, &, v

Output : ¥

letz = E; 0 2)x) (2]

while rermination condition not met, do
| z2=2— o (VgEyiz:x))

end

-

y = argmax, log py(y|2, x)

Lee, J., Shu, R. and Cho, K., 2020. Iterative refinement in the continuous space for

QOMeta g8 Microsoft

non-autoregressive neural machine translation. EMNLP 2020 (pp. 1006-1015). >



Example 15: FlowSeq

. Another direction is to actively
learn a more complex prior

Flowseq is a model which uses
flow to map Gaussian noise to a
complex prior.

QOMeta g8 Microsoft

Output Probabilities

—> Target Decoder

> Target Encoder

S S S S

o) o) ) o]

A dog runs  away

T forward pass

l backward pass
@ multi-head attention

A >
| I Z1 ) [ |

;! 5.5

One Step of Flow

:: |Z§_:E'

LR

| xK

4'\ I

Split

.

v

Source Encodings
.f.

Source Encoder

P+ 4+ 4+ 4

) o) o) o] o)

ein hund rannte weg

Squeeze

| x(L — 1)

N

One Step of Flow

_______________________________________

Prior Flow

X. Ma, C. Zhou, X. Li, G. Neubig, and E. Hovy, “Flowseq: Non-autoregressive conditional
sequence generation with generative flow,” in EMNLP-IJCNLP, 2019, pp. 4282-4292.



Example 16: Discrete VAEs (VQ-VAE)

. Training of VQ-VAE for NAR
generation are usually two steps:

Learning the encoder and decoder
Z.(x)

« Learning the AR prior over the X —*
discrete symbols.

. Although the prior part is based on
AR, it is typically shorter than the
original length.

Latent Predictor
P(2)

ZT Z_(x)

Ngarest 9 Decoder X’
Neighbors

Codebook

L. Kaiser, S. Bengio, A. Roy, A. Vaswani, N. Parmar, J. Uszkoreit, and N. Shazeer, “Fast decoding
in sequence models using discrete latent variables,” in ICML. PMLR, 2018, pp. 2390-2399.

Roy, A., Vaswani, A., Neelakantan, A. and Parmar, N., 2018. Theory and

N Meta Microsoft

experiments on vector quantized autoencoders. arXiv preprint arXiv:1805.11063. .



Example 17: Discrete VAEs (latent-GLAT)

1 Yz Ys Us Us

y
N N S

Mix. Decoder

TERAN
Qz_ﬁ <2_21Q2_3 <2_41 Qﬁ'&?ﬁﬁf z
[ Latent

M2 N5 Na N5 ™ predictor
r 3

Predict length + Softcopuy

i 25 S
\ =) 7 Attention

. Recently, there are also papers applying NAR
generation in the discrete codes as well.

Attention

. Compared to the typical framework that relies [ Encoder J

on AR model to generate the prior, it seems X X2 Xa Xa -

- : : A
more efficient to generate them iteratively. m.m[ i Decoder ]

T2 ZTE ® &

Attention| Non-autoregressive qa GF GF

Latent Predictor ] 24| Zs)

(z1) ha hs (za) (2] Ui h2 Yz ha hs

Y. Bao, H. Zhou, S. Huang, D. Wang, L. Qian, X. Dai, J. Chen, and L. Li, “latent-glat: -

N Meta Microsoft Glancing at latent variables for parallel text generation,” ACL, 2022.



A principled goal

 The main challenge of NAR generation is “failure of capturing the target side
dependency”.

* Qverall instructions:

Methods _____| Overallinstructions

Model architecture Improve the model’s capability of capturing target-side dependency
Obijective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

QOMeta F% Microsoft 58



Objective Functions

Standard Cross-
Entropy Loss

OQOMeta g% Microsoft

Loss with
latent
alignments

Loss beyond
token-level

59



Cross Entropy

 Most NAR models apply the standard loss function (cross-entropy) for training

T
Lo = — » log P(y:|X:06)

=1

e Standard cross entropy will compare tokens one by one between model
prediction and ground-truth, which requires the length has to be correct!

N Meta Microsoft
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Problems of Cross Entropy

e Over penalty for mis-alignment! (For AR model it is not an issue)

a. Ref :|Vielen|| Dank !
b. Pred: ; Vielen||Dank

a. Ref : Vielen \ Dank !
b. Pred: ; Vieien) Dank

* Token-level CE does not consider the global correctness, which aggravates the
weakness in capturing target side dependency.

 Maximum likelihood training will tend to cover all possible modes, however, as
we discussed, NAR model lack the ability of capture target side dependencies.

N Meta Microsoft 61



Example 18: CTC & AXE

Y

. . A CTCloss
* Inspired from ASR literature, we replace can replace |

objective with CTC that marginalizes all possible alignments

* It assumes output always longer than the target, which in text
generation we need to up-sample the decoder.

Transformer Decoder

* The final output is decoded by collapsing repetitive tokens. \ Unsample (deconv) /
Lcre = — Z ]___[;”(u'f'l:f: ,0) Transformer
acfB(y) 1 Encoder
e Similarly, AXE is another loss using the monotonic alignment
to improve cross entropy 1
X

* Difference from CTC: (1) no need to up-sample; (2) using DP to find
the best alignment instead of marginalizing the alignments.

]J. Libovicky and J. Helcl, “End-to-end non-autoregressive neural

7
Laxg = — Z log P, (yf |X: 9) — Z P (F) machine translation with connectionist temporal classification,”
P . vy in EMNLP, 2018, pp. 3016-3021.

G. Marjan, V. Karpukhin, L. Zettlemoyer, and O. Levy, “Aligned cross entropy for

O Meta non-autoregressive machine translation,” in ICML. PMLR, 2020, pp23515-3523

Microsoft



Example 19: OAXE

* Both CTC and AXE can only resolve the

mismatch when for “monotonic” ate pizza this after ate pizza this after
alignment, while in practice re-ordering * * + * + M
exists in real data, especially for tasks s afer __ __
SUCh as MT & ate pizza this ﬁm ate pizza
(a) Standard XE (b) Aligned XE
* Order-agnostic cross-entropy (OAXE) I ate pizza this After

loss applies the Hungarian algorithm to %

find the best possible alignment, which 5 _
. X . this 3UeL 1  ate pizza
allows non-monotonic alignments in |
. (c) Order-Agnostic XE
NAR generation.

Loaxe = argmin (— log P(O'| X))
(e
C. Du, Z. Tu, and J. Jiang, “Order-agnostic cross entropy for non-autoregressive

machine translation,” in ICML. PMLR, 2021, pp. 2849-2859.

N Meta Microsoft 63



Example 20: N-gram IOSS BoNO((‘get’,'up”))

* [a] N-gram level loss minimizes the
Bag-of-Ngrams (BoN) difference

between the model output and the SoftTmax
reference sentence. NAT Docoder

* [b] proposed “edit invariant
sequence loss (EISL)” to replace CE,

Desired output: cat is on the red blanket

+F]

. Moisy target: a cat is 1is on the red blanket
which also focuses on n-gram > GRS th- red  blanket
. . a cat is is on the red blanket
matChIng das ConVOIUtlon- a cat is is on the red blanket
a cat is is [‘on the red blanket

[a] C. Shao, J. Zhang, Y. Feng, F. Meng, and J. Zhou, “Minimizing the bag-of-ngrams difference for non-
autoregressive neural machine translation,” in AAAI, vol. 34, no. 01, 2020, pp. 198-205.

[b] G. Liu, Z. Yang, T. Tao, X. Liang, Z. Li, B. Zhou, S. Cui, and Z. Hu, “Don’t take it literally: An

N Meta Microsoft edit-invariant sequence loss for text generation,” arXiv preprint arXiv:2106.15078, 2021.



Example 21: ENGINE

* We can further go from n-gram level to
entire sequence level with a learned energy
function.

* In ENGINE, a pretrained AR model is used as
an energy score for evaluating the output
globally.

* Gradient is passed via straight-through /
softmax during training.

Energy
function

Encoder

=

Inference
network

L. Tu, R. Y. Pang, S. Wiseman, and K. Gimpel, “Engine: Energybased inference networks for

N Meta =. Microsoft non-autoregressive machine translation,” in ACL, 2020, pp. 2819-2826
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Example 22: GANs

* Extending similar ideas from
learning with a pretrained
energy function, it is also

: .. A Generator B Discriminator
possible to learn jointly! @) (20) )
AR ey S S I Thrr?JIEgh i
Onehot i 4 i ¥ LY . Estimator [ ]
5 Sz - SL. MTLP
* For example, it might be useful {MTLP~ -MTLP~ -M'LP~[MTLP] [ Max Poolmg J
to train text-GAN in NAR 1 1 r___-l__--[_-_l_l--_T
. |
settings. U L | " ] I__”_l__rz__l__ -
Positional Transformer s Differentisbie | Transfnrmer J Posttional
Encoding r T T T T ====» Non-Differentiable - 1 Encoding
@* Zy I[ = ]l J[ Zy, ] == Gradient Estimator 04 I[ 03 || I[ 0, ]
Huang, F., Guan, J., Ke, P,, Guo, Q., Zhu, X. and Huang, M., 2020. A text GAN for
00 Meta = Microsoft language generation with non-autoregressive generator.
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A principled goal

 The main challenge of NAR generation is “failure of capturing the target side
dependency”.

* Qverall instructions:

Methods _____| Overallinstructions

Model architecture Improve the model’s capability of capturing target-side dependency
Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

QOMeta F% Microsoft 63



N Meta

Sequence-level Knowledge Distillation (KD)

. Knowledge distillation
Use the soft logit probability prediction from a teacher model to teach a student model

Knowledge distillation in sequence tasks
- Token-level knowledge distillation
- The logit probability of each token is used to teach student
- Sequence-level knowledge distillation
- The sequence generated by the teacher model is used to teach student

Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).
Kim Y, Rush A M. Sequence-level knowledge distillation[J]. arXiv preprint arXiv:1606.07947, 2016.

Microsoft
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Sequence-level Knowledge Distillation (KD)

Distillation at sequence level can significantly improve NAT systems:

1. train teacher autoregressive model

2. replace targets with teacher’s prediction

3. train NAT models on the synthetic pairs

Almost all NAT systems benefit from KD:

w/o distillation

w/ distillation

Vanilla NAT (Gu et al, 2017) 11.4 19.5 (+8.1)
FlowSeq (Ma et al, 2019) 18.6 21.7 (+3.1)
LevT (Gu et al, 2019) 25.2 26.9 (+1.7)

N Meta Microsoft

E Train AT model }

\

[ Decode from AT }

model

\ 4

[ Train NAT model }
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Why KD works?

Simplify the data distribution of target data, and thus reduce target

data dependency

Data is complicated, the teacher (AR) model only learn the most dominated
distribution from the data

During beam search/sampling, the most probability data pattern is
generated instead of the whole data distribution

E.g., “Thank You” - “Vielen Dank” or “Danke” , after distillation may only
have “Danke” in German, reduce the multi-modality of target data

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-

autoregressive machine translation,” in ICLR, 2019

N Meta Microsoft
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How KD works?

. Quantitive results: A cross-entropy based measure is used for dataset complexity

and prepare distilled data from different teacher models.

F(d)

N Meta

3.2 »— Conditional Entropy ,--'f L5 75
—<— KL divergence '
34
-2.50
3.1
2.255 232
S a
3.0+ — -2.00
30
~ -1.75
* H‘“‘“
2.9+ ¥
-1.50 28
tiny small base big real
Microsoft

/

—e— Training Set BLEU

tiny

small

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-

base big real

Reordering
o
N
N
w

L

Fuzzy Reordering Score

.\...

N\
\
\
Y

small base

autoregressive machine translation,” in ICLR, 2019

big

real




How KD works?

- NAR models perform the best when the data complexity matches the model’s

capacity 28
‘_,)-("" ‘_,a-('"‘ ",d"—’_
26 e
= =
D -
5 24 F i x” :
m -+~ Transformer (Vaswani et al., 2017)
..qm_-., - —e— Vanilla NAT (Gu et al., 2018) 22.0 21.65
[t
0.500 | 20.28
*0\ 20119.3 19.5
0.475 - e 17.99 -+~ Transformer (Vaswani et al., 2017) 8.5b -+~ Transformer (Vaswani et al., 2017)
T 18 ! —e— FlowSeq (Ma et al., 2019) —e— NAT (Lee et al., 2018)
£0.450 L _ . 11.40 | ‘ | ‘
S ' tiny small base big real tiny small base big real tiny small base big real
-g 0.425| Fuzzy Reordering Score \ 30
@ \
 0.400 \
\ 28
0.375 \
) 2
26
0.350 L -
tiny small base big real 2
o 24
[t
22 -+¢- Transformer (Vaswani et al., 2017)
-3¢~ Transformer (Vaswani et al., 2017) -+¢- Transformer (Vaswani et al., 2017) —e— LevT (Gu et al., 2019)
20 —e— InsT (Stern et al., 2019) —e— MaskT (Ghazvininejad et al., 2019) —¥— LevT-big (Gu et al., 2019)
tiny small base big real tiny small base big real tiny small base big real

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019

QOMeta F% Microsoft



Problems of KD

KD makes the training pipeline too long

You always need to first train an AR model as the teacher

The capacity of NAT models should be correlated with the complexity of
the distilled dataset

KD hurts the lexical choice especially on low-frequency words.

N Meta Microsoft
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A principled goal

 The main challenge of NAR generation is “failure of capturing the target side
dependency”.

* Qverall instructions:

Methods _____| Overallinstructions

Model architecture Improve the model’s capability of capturing target-side dependency
Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

QOMeta F% Microsoft 75



Learning paradigm

Advanced Learning

Paradigm

OQOMeta g% Microsoft

Multi-
task/Curriculum
Learning

Pre-training

76



Multi-task and Curriculum Learning

* Directly learning NAR models over a given dataset is hard, and easily gets
stuck into bad optimum.

 NAR models can effectively benefit from learning multiple (easier) tasks
jointly, with a better curriculum

* Easier tasks:
* Learning with partially masked input
* Learning with partially autoregressive generation
e Learning on smaller granularity

N Meta Microsoft



Example 23: GLAT

* In the original Mask-Predict, it is found

that when training on sequences with —— Vielen
different mask ratio, the performance of 1 }
single iteration model is better than those Encoder.Decoder e
trained directly on “full-mask” settings. Encoder —| Decoder

e Such results in fact indicate that, when A 8 4
training NAR models, it is beneficial to Thanks a lot <mask>Dank

ease the difficulty by jointly training on
glanced targets.

M. Ghazvininejad, O. Lewvy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of

conditional masked language models,” in EMNLP-1IJCNLP, 2019, pp. 6112-6121. 23

N Meta Microsoft



Example 23: GLAT

N Meta

Compared to Mask-Predict where the glancing is completely random, it is possible
to design a curriculum: We can control the number of tokens being glanced based
on the training progress.

Target: generacion de lenguaje eficiente

[~ g(fratio : D(Q, y))
Prediction: generacion lenguaje eficiente de distance

1
T 1

efficient language generation [mask] [mask] [mask] [mask]

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, “Glancing transformer for non-
Microsoft autoregressive neural machine translation,” in ACL-IJCNLP, 2021, pp. 1993-2003. 7



Example 23: GLAT

. Compared to Mask-Predict where the glancing is completely random, it is
possible to design a curriculum: We can control the number of tokens being
glanced based on the training progress.

Supervision: generacion de lenguaje eficiente

l

efficient language generation [mask] [mask] lenguaje [m3sk]

Glanced target token

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, “Glancing transformer for non-

AN Meta Microsoft autoregressive neural machine translation,” in ACL-IJCNLP, 2021, pp. 1993-2003.



Example 24: Task-level curriculum learning

Outp utTa rg et Token

@@%’@@@, AR training K=1

Task-level curriculum -
learning to shift the 9 e
e | — [ Feed Forward ]
training strategy from AR [ e ||liC
3 3
to SAR gradually, finally =t J|j7pt fetcen Partially NAR (=2 4816
. ( AddS;Norm J« l Addc?;Norm J training (n_gram) —<£)0,
to NAR generation. oo || || oo ammon )
- Eosiéi{;:m;l @—EB ) E‘osi Lu;;)ngl @—EB
Word Emszdmg Iﬁ i‘nu"u'{j()ﬁrcié]rlrwltﬁ‘eddilgé é
|_"'~.-"'IkJ k Source Token k Source Token Target Token K=N
Plylz) = H H P(yek+jly<tkt1, 73 6)
=0 j5=1

J. Liu, Y. Ren, X. Tan, C. Zhang, T. Qin, Z. Zhao, and T.-Y. Liu, “Task-level curriculum learning

00 Meta =. Microsoft for non-autoregressive neural machine translation,” in IJCAI, 2021, pp. 3861-3867.
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Example 25: Multi-granularity Curriculum Learning

. Curriculum learning can also be performed Source Targets
on data with different translation - AT
- 2 | bank F
granularities. = e
v o2 LR
o _ o . E hollow 25,0 B
. Training data is divided into words, £ | structural %# 1;;'
phrases, and sentences. A progressive - | T R
) . L. . S | He is very good I
multi-granularity training strategy is used £ | at Enelish. fis 3% B 25 -
2 © fily ) B KT 1R

to train the model from easy to hard

L. Ding, L. Wang, X. Liu, D. F. Wong, D. Tao, and Z. Tu, “Progressive multi-granularity training for non-
autoregressive translation,” in Findings of ACL-IJCNLP, 2021, pp. 2797-2803.

82
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Improve NAR generation with Pre-training

N Meta

Like typical AR sequence generation, NAR models can also be

benefitted by fine-tuning from a pretrained models, especially from
“Encoder-only” pretraining such as BERT.

Y. Su, D. Cai, Y. Wang, D. Vandyke, S. Baker, P. Li, and N. Collier, “Non-autoregressive text generation
with pre-trained language models,” in EACL, 2021, pp. 234-243.

P. Li, L. Li, M. Zhang, M. Wu, and Q. Liu, “Universal conditional masked language pre-training for
neural machine translation,” ACL, 2022.

Microsoft
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A principled goal

 The main challenge of NAR generation is “failure of capturing the target side
dependency”.

* Qverall instructions:

Methods _____| Overallinstructions

Model architecture Improve the model’s capability of capturing target-side dependency
Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Technigues that improve the final performance

QOMeta F% Microsoft 84



Length beam / Noisy Parallel Decoding

N Meta

First predict a target length L, and then construct a length
beam [L-B, L+B] with beam size 2B+1

Use NAR model (encoder one time, decode 2B+1 times) to
generate sentences with these lengths

For latent-variable based models, we can further sample
more by sampling multiple latent codes, and then choose
the best one with highest model scores.

Microsoft
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AR model re-ranking

After obtaining multiple candidates, we can use AR model to
give a probability score to help select a better candidates

Usually weighted combine the probability score from both AR
and NAR for final reranking

N Meta Microsoft
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Combine with n-gram LM

. Similar to the common practice in ASR, it is also useful to combine n-gram
LM into NAR generation, while maintaining overall speed-up.

Configuration BLEU (A) BP L5 (Speed-up) LT (Speed-up)

big (teacher) 21.07 0.920 345 ms 1.0 x 923 ms 1.0 x

AT base 18.91 0.908 342 ms 1.0 x 653 ms 1.4 x
base (12-1) 15.47 0.806 152 ms 2.3 x 226 ms 4.0 x

base (12-1) + KD 18.76 0.887 145 ms 24 x 254 ms 3.6 x

KD + CTC 16.93 (+0.00) 0.828 173 ms 199 x 84ms 11.0x

KD + CTC + VAE 18.73 (+1.80) 0.862 164 ms 21.0 x 83ms 11.1 x

NAT w. BeamSearch20 19.80 (+2.87) 0958 285ms 121 x 99 ms 9.3 x
w. BeamSearch20 + 4-gram LM 21.41 (+4.48) 0954 315ms 11.0x 106 ms 8.7 x

w. NPD5 18.88 (+1.95) 0.866 34.9 ms 09 x 313ms 2.9 x

w. NPD5 + BeamSearch20 + 4-gram LM 21.84 (+4.91) 0962 57.6 ms 6.0 x 284 ms 3.2 x

QOMeta g8 Microsoft

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine

Translation: Tricks of the Trade. ACL 2021.
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A practical system of fully NAR model for

machine translation

Methods Distillation

Latent Variables

Latent Alignments

Glancing Targets

What it can do?  simplifying the training

data

model any types of de-
pendency in theory

handling token shifts in
the output space

ease the difficulty of
learning hard examples

What it cannot?  uncertainty exists in the

teacher model

latent variables

constrained by the mod-
eling power of the used

unable to model non-
monotonic dependency,
e.g. reordering

training / testing phase
mismatch

Potential issues  sub-optimal due to the
teacher’s capacity

rior collapse

difficult to train; poste-

decoder inputs must be
longer than targets

difficult to find the op-
timal masking ratio

q(zlx.y)

Transformer
Decoder

Latent variables

Vielen Dank CTC Loss

Vielen Vielen Vielen Dank Dank

alignments

}

Vielen Dank

QOMeta g% Microsoft

}

Thanks a lot

Encoder-Decoder

Transformer Attention
Encoder

Sample & Glance
Target Tokens

SoftCopy &

+ Upsample

Thanks a lot L’

-+

- |

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.
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Final System

- Combine the technique of KD
with proposed model, we can
finally close the performance gap
between autoregressive models.

« In the meantime, the fully NAT
model maintains over x17 speed-

up.

N Meta Microsoft

Speedup(x)

M- Semi-NAT[17]
N N e -®- CMLM[18]

14 4 . S - RefineNAT[29]
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4 - IM-NAT[55]
\ —- OAXE-NAT[39]
i —k- Glat[37]
3 ‘ PNAT[58]
A S \_‘_-‘ A
S A - A- SynST[59]
“\ . 1 AligNART[62]
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RewriteNAT[26]
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\
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Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.
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Final System

Speed vs Quality Trade-off

N Meta

Iterative NAT models (LevT and CMLM) require multiple iterations to achieve reliable
performance with the sacrifice of latency
Speed advantage of fully NAT models shrinks when parallelism is constrained

281 S B A 281 * A 281
26- * 261 * 26
24 1 241 241
2 =2 2
4 22 422 4 221
[aa] 23] an]
201 \ A ATbase ¥ nar 201 V¥V A ATbase ¥V nar 20 v A ATbase VY nar
18- B ATbase(12-1) = NATCTC 181 @ B AT base(12-1) = NATCTC 181 B ATbase (12-1) = NATCTC
—4- MM Jr NAT CTC+VAE - cum Pr NAT CTC+VAE 4 cMM Jr  NAT CTC+VAE
@ LevT 2 NAT CTC+GLAT @ LevT X NAT CTC+GLAT @ LevT M NAT CTC+GLAT
1("-]’_01 ' 102 16 102 ' ' 16 10° 2x10° 3x10° 4x10°
Latency (ms) / GPU Latency (ms) / CPU Latency (ms) / GPU (MAX)

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
=. Microsoft Translation: Tricks of the Trade. ACL 2021. 90



Final System

How important all these techniques: KD | AXE CIC | VAE | RND GLAT | BLEU

11.40

v 19.50

e The combination without KD has a clear , j ;?-gz
performance drop compared to the one with KD Y 18.18

v v 26.51

e CTC-based model obtains better accuracy v v 23.58
. .. . . e v v 22.19

through marginalizing all valid alignments y y Yy 27 40

e The model with GLAT is more superior to the one i i d v 53;2‘;"
with the RND training method, however it v v v 26.16

. . v v 21.81

performs similarly with VAEs v iy 7 | 2720

v v | v | v | 2121

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
N Meta =ﬁ Microsoft Translation: Tricks of the Trade. ACL 2021.
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Summary of Part I

 The main challenge of NAR generation is “failure of capturing the target side
dependency”.

* Qverall instructions:

Methods _____| Overallinstructions

Model architecture Improve the model’s capability of capturing target-side dependency
Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Additional techniques that improve the final performance

QOMeta F% Microsoft 92



Outline

* Part I: Introduction (Jiatao Gu)

e Part Il: Methods (Jiatao Gu)
 Part Ill: Applications (Xu Tan)

* Part IV: Open Problems (Xu Tan)

https://github.com/NAR-tutorial/acl2022

N Meta Microsoft
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https://github.com/NAR-tutorial/acl2022

Non-Autoregressive Sequence Generation

(Part Ill: Applications)

Xu Tan
Microsoft Research Asia

QO Meta g8 Microsoft



Outline

e Overview of NAR generation tasks in NLP/Speech/CV
» Target-target vs target-source dependency

* Key tasks
* Neural machine translation
e Text error correction
* Speech to text recognition
» Text to speech/Singing voice synthesis
* Image generation

 Summary of NAR applications

* Benefits of NAR for different tasks
Addressing target-target dependency (model multimodal distributions)
Addressing target-source dependency (learn source-target alignment)
Data difficulty vs model capacity
Streaming vs NAR, AR vs Iterative NAR

N Meta Microsoft



Target-target vs target-source dependency

* Tradeoff in dependency
* Target-target dependency: dependency among target tokens
* Target-source dependency: dependency on source tokens

* |f target-target is stronger than target-source dependency - more information is needed
from target tokens instead of source tokens = NAR is more difficult

e Connection to multi-modality
e Multi-modality: P(x|y) is not single-modal, not one-one mapping
* e.g., “Thank You” - “Vielen Dank” or “Danke”
* |f target-source dependency dominates, then P(x|y) is more like single-modal, a source token
will have one definite translation
* |f target-target dependency dominates, then P(x|y) will be like multi-modal, a source token
will have multiple token translations

N Meta Microsoft



Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation s rate Token Generation Image Token - e

The values in the last two columns are just for reference

QOMeta F% Microsoft 97



Target-source dependency

Target has correspondence with source  Speech Enhancement
Voice Conversion
Text to Speech
Singing Voice Synthesis

Speech Recognition

Target is a minor change of source Text Error Correction
Text Style Transfer
Target is a translation of source Machine Translation

Target is implicitly correlated to source  Dialogue Generation

Image Generation

QOMeta F% Microsoft

Alignment inherently

Need alignment

Music score alignment

CTC Alignment

Locate the minor changes

Content unchange and style change
Alignment through attention
Absorb the high-level abstraction

Category information

98



Target-target dependency

Dependency Type

Text Machine Translation
Text Summarization
Text Error Correction
Text Style Transfer
Dialogue Generation
Speech Recognition

Speech and Image Text to Speech
Singing Voice Synthesis

Image Generation

QOMeta F% Microsoft

Discrete tokens in languages are contextualized, explained
mutually.
Language tokens have strong mutual dependency

For continuous signal like speech/sound/image, they
depends on the concept, like speech frames depend on a
word, image pixel depend on a class.

Maybe weaker mutual dependency

99



Outline

e Overview of NAR generation tasks in NLP/Speech/CV
» Target-target vs target-source dependency

* Key tasks
* Neural machine translation
e Text error correction
* Speech to text recognition
» Text to speech/Singing voice synthesis
* Image generation

 Summary of NAR applications

* Benefits of NAR for different tasks
Addressing target-target dependency (model multimodal distributions)
Addressing target-source dependency (learn source-target alignment)
Data difficulty vs model capacity
Streaming vs NAR, AR vs Iterative NAR

N Meta Microsoft



Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation s rate Token Generation Image Token - e

The values in the last two columns are just for reference

QOMeta F% Microsoft 101



Text error correction

Text errors: writing assistant, search engine, speech recognition, optical character
recognition, etc.

Input: text sequence with errors; Output: corrected text sequence

Naive NAR solution usually fails

Challenges
* Error detection and error correction, to avoid under/over-correction
* Few modifications in text error correction (e.g., 10% WER)

Design with inductive bias, instead of black-box end-to-end learning in NAR!

N Meta Microsoft



Text error correction

 How to detect errors and correct errors?

* Implicit way
» Target-source attention
* CTC (connectionist temporal classification): duplicate source tokens multiple times, and use CTC loss
P(ylx) = Xzepp) P(z]x)
* Explicit way
» Detect the exact error patterns of insertion/deletion/substitution

* Or use duration as an approximation: O for deletion, 1 for substitution or nochange, 2 or more for
insertion

* Expand the source tokens to the length of target tokens according to duration, and generate correct
tokens

N Meta Microsoft



Text error correction

* Implicit error detection and correction

e Target-source attention (NAR)

* Determine the whole length of target sequence, but no need the exact alignment
* Use QKV attention:

* Query: blank token/ position embedding according to the predicted length
* Key/Value: source hidden

 CTC (connectionist temporal classification) P(y|x) = Zze(p(y) P(z|x)
* e.g., | haveahat 2 | have a cat
* Input of the CTC model: | I I have have have a a a hat hat hat (duplicate 3 times)
* Output ofthe CTCmodel: 1@ @ have @ aa@cat @ O
* CTC path merge: I have a cat
QO Meta g8 Microsoft



Text error correction

* Explicit error detection and correction
* Exact insertion/deletion/substitution

* Detect each source token as insertion/deletion/substitution

* Still need to determine the length of insertion for parallel generation

e Ordirectly use duration as an approximation: O for deletion, 1 for substitution or nochange, 2 or
more for insertion

* However, how to get the label for insertion/deletion/substitution or duration?

N Meta Microsoft



Text error correction

* How to get the label? Through target-source alignment!
* Naive hard match, not optimal
e Alignment with dynamic programming, based on edit distance

Edit Distance Matrix Edit Path Edit Alignment
1 1
Target * ) Insert + ) Delete 4 p ™\
o : : en (2 [1]1]0]1]
A B c D : * | Substitute = | Identity | Aligna Src B [BIDlEIEF
e ~
a ' ! Tgt A B/C D @F
g 1 Src (@B | B D E)F 1 ¢
B 1 1 | 2 3 ' | path a ! > <
1 1 .
B | 2 e | 3 AN T @ELBe)) ! ten (1] 2 [1]o]1]
e N *
§ c : sc(BlBlalplElF : Alignb1 Src B| B |D|E|F
g D 3 2 2. 2 1 | Pathb 1 Tgt A B|C D | @|F
N 1 Tgt | A|B(C)D[@)F 1 \L J
1\ | e ~N
E 4 3 3 3 e Al Len 11 2 1
! Src B|B|D|E|F !
| | Pathc 's|Alignb2 Sc [B|B| D E|F
F 5 4 4 3
e TgtABCDFJ: Tot A/Blc/DBF
o J
Substitute Delete : :
1 Path a:3 1 |n-Gram | AB: 90 Align a:90+0+0+0+0
Insert : Match b: 3 : Freq |BC: 80| | Freq [b1:0+80+0+0+0
! Score c2 1| Table [cp: 20| |SOr€]b2:0+0+20+0+0

Source

Target:

Source: BBDEF
Target: ABCDF

. |BL,IBI,IBI,IDI,[E],|F]
AL IBLICLIDLT L 1F]
21101

Leng Y, Tan X, Zhu L, et al. FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition[J]. NeurlPS 2021
QO Meta g8 Microsoft
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Text error correction

* How to use the alignment label?
* Provide duration label or provide error detection label

N Meta

Microsoft

Token Length

2 1 1 0 1| —
. .
Length Predictor

L O I

Transformer Encoder

Attention
2

Target

—»> >
—»
—» O
—» O
—>» T

Transformer Decoder

obddd—

Source

_>

J

-
TYIET:

Adjusted Token

107



Text error correction

* In training correction model, usually data augmentation/pre-training is used

 Why? Few modifications in text error correction (e.g., 10% WER), few training signal can be
leveraged

* How to augment data?
* Manually augment: insertion/deletion/substitution
* The probability distribution of deletion, insertion and substitution is set to the error distribution
* Model based augment
* BERT model with masked language modeling

N Meta Microsoft



Text error correction

* Text error correction on speech recognition (FastCorrect, NeurlPS 2021)
 ASR model is a Conformer model from ESPnet, on Chinese AISHELL-1 dataset

AISHELL-1 Test Set Dev Set Latency (ms/sent) on Test Set
WER | WERR | WER | WERR GPU CPU*4 CPU
No correction 4.83 - 4.46 - - - -
AR model 4.08 15.53 3.80 14.80 149.5 (1x) 248.9 (1x) 531.3 (1)

LevT (MIter=1)[9] | 473 | 2.07 437 | 2.02 54.0(2.8x) 827(3.0x) 158.1(3.4%)
LevT (MIter=3)[9] | 4.74 | 1.86 438 | 1.79 60.5(2.5x) 83.9(3.0x) 161.6(3.3%)
FELIX [25] 4.63 | 4.14 426 | 4.48 23.8(6.3%x) 41.7(6.0x)  85.7 (6.2x)

FastCorrect 4.16 13.87 3.89 13.3 21.2 (7.1x)  40.8 (6.1x) 82.3 (6.5%)

N Meta Microsoft 109



Text error correction

e Text error correction on speech recognition (FastCorrect, NeurlPS 2021)
 Compare with deep encoder and shallow decoder (no inductive bias)

N Meta

Microsoft

AISHELL-1
Model WER Latency (ms/sent)
Yo GPU CPU
No Correction | 4.83 - -
AR 6-6 4.08 149.5 (1x) 531.3 (1x)
AR 8-4 4.14 1205 (1.2x) 427.6 (1.2x)
AR 10-2 4,23 84.0(1.8x) 317.6(1.5%)
AR 11-1 4.30 66.5(22x) 281.0(1.7x)
FastCorrect 4.16 21.2 (7.1x) 82.3 (6.5x%)
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Text error correction

* |s implicit detection or explicit detection good enough?
* Implicit: does not provide clear signal about which tokens are incorrect
 Explicit: suffers from detection accuracy (insertion/deletion/substitution)
* A better way: a soft detection mechanism: neither too implicit nor too explicit

LU ©
HEOHODEE
QO Meta g8 Microsoft ;L] i 6 iEm:di i i [i




Text error correction

* Extensions of error correction on ASR/OCR or other text generation models

* N-best output
* Voting effect: tokens from multiple sentences can verify the correctness with each other

n «u n u

* e.g., “lI have a cat”, “I have a hat”, “I have a bat”

* Source speech/image information
* Two encoders, one for speech/image, the other for error text
* Use cross-attention to serve as additional input

* Action based correction
* First predict the correction action: keep, delete, generate
* Then generate the corresponding correction

N Meta Microsoft



Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation s rate Token Generation Image Token - e

The values in the last two columns are just for reference

QOMeta F% Microsoft 113



Automatic Speech Recognition

* Input: speech (waveform/spectrogram) sequence
e Output: text (word/BPE/character/phoneme) sequence

* Target dependency comparison with NMT

« NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next
should be B, otherwise if the first is C, the next should be D.

* ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next
should be B. If the first is C, the next should be still B.

Target dependency in ASR is weaker than that in NMT

N Meta Microsoft



Automatic Speech Recognition

e CTC (connectionist temporal classification)

Pl = ) P(zl)

z€P(Y)
@(y) is called CTC path
* e.g., z: HHE@LALOO, or PHHEELALO —> y: HELLO

* CTC assumes no dependency among the target tokens, but can still works well

* But modeling target dependency can still bring improvement

N Meta Microsoft



Automatic Speech Recognition

* Refine the CTC output with bidirectional dependency

* Token-level (after CTC merge):
Mask-CTC: CMLM decoder refine the CTC output
Improved Mask-CTC: with length adjustment

Insertion Transformer:
KERMIT

* Frame-level (before CTC merge)
* Imputer:

e Align-Refine:

* Align-Denoise

* Intermediate CTC

e Self-conditioned CTC: DSLSP

iguchi'Y, Chen N, Fujita 'V, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.
N Meta g& Microsoft



Automatic Speech Recognition

Model #iter Processing unit CTC
A-CMLM [17] 3 token

Imputer [18] 8 frame v
LASO [20] 1 token
Spike-Triggered [22] 1 token v
Mask-CTC [19] 10 token v
Improved Mask-CTC [31] 5 token v
Align-Refine [23] 5 frame v
Align-Denoise [33] 1 frame v
Insertion Transformer [21]  ~ log,(L) token

KERMIT [21] ~ log, (L) token v
Intermediate CTC [35] 1 frame v
Self-conditioned CTC [36] 1 frame v
CIF-NA [39] 1 token v

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.
QO Meta g8 Microsoft 117



Automatic Speech Recognition

Inference speed LS-100 (WER) TED2 (WER) CSJ-APS (CER)
Model Hiter RTF  Speedup cleandevo ther cleanteSto ther dev test evall eval2 eval3
CTC/attention L 0.341 1.00x 6.8 18.8 7.4 19.0 11.6 8.7 54 4.0 9.8
AR + beam-search > L 3419  0.10x 6.3 18.2 6.8 18.5 10.4 8.4 5.1 3.8 9.0
Transducer L 0.069  4.94x 7.3 19.9 7.6 19.9 9.6 9.2 6.3 4.5 10.6
+ beam-search > L 0.234 1.46x 6.4 18.8 6.8 18.9 8.6 8.2 5.2 4.1 10.0
CTC 1 0.059  5.78x 74 205 7.8  20.8 8.9 3.6 5.4 4.0 9.6
Mask-CTC 10 0.063  5.41x 72 203 7.5  20.6 8.9 8.5 5.6 4.0 9.6
Improved Mask-CTC 5 0.072  4.74x 7.0 19.8 73 202 8.8 8.3 5.5 4.0 9.5
Align-Denoise 1 0.073  4.67x 8.0 223 84 225 9.0 8.7 54 3.7 9.1
NAR Intermediate CTC 1 0.059  5.78x 6.9 19.7 7.1 20.2 8.5 8.3 5.6 4.1 9.8
Self-conditioned CTC 1 0.059  5.78x 6.6 194 6.9 19.7 8.7 8.0 53 3.7 9.1
KERMIT ~ log,(L) 0.361 1.06 % 7.1 19.7 74  20.2 9.1 8.2 5.4 3.7 9.5
Insertion Transformer  ~log,(L) 0.083  4.11x 16.0 273 162 274 - - - - —
CIF-NAT 1 0.073  4.67x 154 340 15.7 34.6 - - - - -

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.
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Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation s rate Token Generation Image Token - e

The values in the last two columns are just for reference
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Text to Speech

 Input: text (character/phoneme) sequence

* Output: speech (waveform/spectrogram) sequence

Ph A ti -
TextA[ Text ] oneme f cous C] Mel ‘(Vocoder]—Speech

AnalysisJ L Model Jspectrogram'L

* We will mainly focus on acoustic model: phoneme to mel-spectrogram mapping, and
vocoder: mel-spectrogram to waveform mapping

QO Meta g8 Microsoft



Text to Speech

* Target dependency comparison with NMT and ASR

 NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next
should be B, otherwise if the first is C, the next should be D.

* ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next
should be B. If the first is C, the next should be still B.

e Besides, NMT and ASR rely on target dependency for language modeling

« TTS
* Speech frames largely depend on the source word, waveform samples largely
depend on the condition spectrogram

* Dependency among speech frames and waveform samples? Yes, indeed, but...

N Meta Microsoft



Text to Speech

* Target dependency comparison with NMT and ASR
* Discrete tokens in languages is contextualized, explained mutually. Language tokens have strong
mutual dependency
* But for continuous signal like speech/sound/image, they depends on the concept, like speech
frames depend on a word, image pixel depend on a class

* Maybe weak mutual dependency among signal itself, that is why parallel generation model is so
popular in image or speech generation.

e Another point

* Waveform samples and image pixels are so long in sequence, inference speed is extremely slow for
autoregressive generation. Strong demand for NAR generation!

* Some specific reasons in speech/spectrogram generation:

* Usually, speech frame is obtained via STFT with window/hop size (50ms/12.5ms), two adjacent frames
have 3/4 overlapping. Autoregressive generation will lead to copy, unstable to model.

N Meta Microsoft



Text to Speech

* Target dependency comparison with NMT and ASR

 NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next
should be B, otherwise if the first is C, the next should be D.

* ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next should
be B. If the first is C, the next should be still B.

e Besides, NMT and ASR rely on target dependency for language modeling

. TTS

* Speech frames largely depend on the source word, waveform samples largely
depend on the condition spectrogram

* Dependency among speech frames and waveform samples? Yes, indeed, but...

Based on above analysis, TTS has much weaker target

dependency than NMT, and slightly weaker than ASR

N Meta Microsoft



Text to Speech: NAR for speedup

* Compared with autoregressive mel-spectrogram/waveform generation
* Sequence is very long, e.g., 1s speech, 500 mel, 24000 waveform points
e Slow inference speed

10 -

Inference Time

100 200 300 400 500 600 700 800 900
A Meta =‘— Microsoft Predicted Mel Length 124



Text to Speech: NAR for robustness

* AR model (Tacotron 2, DeepVoice 3, Transformer TTS) not robust:

words skipping and repeating;

You can call me directly at 4257037344 or my cell 4254447474 or
send me a meeting request with all the appropriate information.

* Encoder-decoder attention: Attention between mel-spectrogram and phoneme:

monotonic and diagonal |
| ﬁ And it is worth mention in
© passing that,
‘ , as an example of fine
.. | " typography
| e - 125




Text to Speech: NAR for controllability

* AR model automatically determines the length of speech
 Lack of controllability: hard to control the voice speed/prosody in AR generation

was executed on a gibbet in front of his victim’s house.

after dinner | he went into hiding for a day or two

N Meta Microsoft



Text to Speech: NAR overview

e Overview of NAR models in TTS

* Nissequence length, T is iteration step

N Meta

Modeling Paradigm TTS Model Training  Inference
AR (RNN) Tacotron 1/2, SampleRNN, LPCNet O(N) O(N)
AR (CNN/Self-Att) DeepVoice 3, TransformerTTS, WaveNet O(1) O(N)
NAR (CNN/Self-Att)  FastSpeech 1/2, ParaNet O(1) O(1)
NAR (GAN/VAE) MelGAN, HiFi-GAN, FastSpeech 2s, EATS  O(1) O(1)
Flow (AR) Par. WaveNet, ClariNet, Flowtron O(1) O(1)
Flow (Bipartite) WaveGlow, FloWaveNet, Glow-TTS O(T) O(T)
Diffusion DiffWave, WaveGrad, Grad-TTS, PriorGrad O(T) O(T)
Microsoft



Text to Speech: FastSpeech

* Design of FastSpeech — Hmel

* Generate mel-spectrogram in parallel

1 )

A0

(for speedup, 270x)

Linear Layer
* Remove the text-speech attention mechanism A @
. ) N x FFT Block a=1.0
(for robustness, no word skipping/repeating) o sitional D:[.z’z’3’l]
* Feed-forward transformer with length regulator Encoding
. Predictor
(for controllability, speed control) Length iegula“’r
N x FFT Block
Positional II: |:|
) . %@ Encoding - T o
https://speechresearch.github.io/fastspeech/ ;
' ' = ' Phoneme Embedding Hp ho
A
Phoneme

N Meta Microsoft
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Text to Speech: FastSpeech 2

* FastSpeech 2
* Improve FastSpeech (one-to-many mapping)
e Use variance adaptor to predict duration,
pitch, energy, etc
* Simplify training pipeline of FastSpeech (KD)
* FastSpeech 2s: a fully end-to-end parallel
text to wave model

—— Data
—— L2loss

p(x]y) multimodal distribution

N Meta Microsott

Mel-spectrogram Waveform [ De—— )
Decoder )\ Decoder }: ... Predictor
2 Y. Y d Ener [ S
Positional
Encoding Energy Predictor
Variance Adaptor 694%;
2 Pitch Predictor
Encoder 2
9 ¢ Juration
Positional @
Encoding Duration Predictor
Phoneme Embedding L % )
3
Phoneme
(a) FastSpeech 2 (b) Variance adaptor

https://speechresearch.github.io/fastspeech2/
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Text to Speech: Multi-modal

* How to model multi-modal distribution p(x|y)
e Simplify the multimodal distribution p(x|y)

« Simplify target: Data distillation: lossy, Data transformation: Short Time Fourier Transformation

(STFT), DCT, Wavelet
* More input information: Pitch, duration, energy, speaker ID, prosody tag, etc..
» Better alignment: duration/alignment modeling

e Advanced modeling for multimodal distribution
e L1: Laplace distribution, L2: Gaussian distribution
* Mixture of Gaussian/Laplace/Logistic: multimodal distribution
* High-order statistics loss: high-order moment, SSIM
* Model-based loss (any distribution): classifier, discriminator in GAN
* Advanced generative models (AR/Flow/VAE/Diffusion/GAN, etc)

—— Data

SN

N Meta Microsoft




Text to Speech: Better alighment

e Duration modeling
* Statistic parametric speech synthesis=> AR model 2> NAR
* Duration = attention, no duration = duration prediction (technique renaissance!)

Hmel Mel-Spectrogram
T v
p | \ [ Decoder ]
I I I] |:| I I I I] s se“ffh/ [ Sﬂftm ax along the horizontal (#) axis ] o
TIIIE ¥
000 (3 : .fogitqs gra‘d. :
a=10 a4 0000 H Laur E'ﬁ x,=-0"(c, -m=1) Ca
olelele BT LI o0
D=[223,1] t - A temp —
1 ‘ ‘) 0) L (1.8 1.2 09) (®)) i |
Duration A A — & <n GEa+T
Predictor ( Project ) [ Duration Predictor ] { eaEs L EEEEEELE
\ %Y [ ¢ ¢ token centres Cpeas |
stop_gradient
II: |:| I I D [ c" - Em = Fm - !H /2 ] ([Tt Encocer
. A ) [ T ) [t token lengths 1.1, e
| a )E [
Hopho EATS Parallel Tacotron 2
FastSpeech Glow-TTS
QO Meta g8 Microsoft .



Text to Speech: Advanced generative models

* Flow/VAE/Diffusion/GAN

* A comparison among different generative models for TTS
e Simplicity in math formulation and optimization

e Support parallel generation
e Support latent manipulation
* Support likelihood estimation

Generative Model AR VAE Flow/AR Flow/Bipartite | Diffusion GAN
Simple Y N N N N N
Parallel N Y Y Y Y Y
Latent Manipulate N Y Y Y Y Y*
Likelihood Estimate Y Y Y Y Y N

GAN is weak in latent manipulation, since the condition in TTS is so strong, P(y|x) is not that much
multi-modal compared to image synthesis, and some GAN based model do not add random noise

N Meta Microsoft



Text to Speech: Flow

 Map between data distribution p(x) and standard (normalizing) prior
distribution p(Z) Evaluation z = f~'(x) Synthesis z = f(z)
e Category of normalizing flow

* AR (autoregressive): AF (autoregressive flow) and IAF (inverse autoregressive flow)
* Bipartite: RealNVP and Glow

Flow Evaluation z = f~'(x) Synthesis z = f(z)
AF [261] zt = Tt - 04 (T<t;0) + (<3 0) | 20 = Ztaqf:tc(%f;);g)

AR t <t»
IAF [169] 2y = btz if) e = 2t - 01(2<4;0) + pe(2<4; 0)
RealNVP [66] | zo = x4, Ta = Za,

Bipartite 2, — 1y, (24 36)
Glow [167] | 2 = @b - 00(wa; 0) + o (as0) | mp = Ztelles

QO Meta g8 Microsoft



Text to Speech: Flow (vocoder)

* Parallel WaveNet (AR)
* Knowledge distillation: Student (IAF), Teacher (AF)
* Combine the best of both worlds

. WaveNet Teacher | ;"‘:“e“’”"’"‘
 Parallel inference of IAF student S — (zilw<s)
* Parallel training of AF teacher Hinguistic featres === L 6 6 .70 0 0.0 00 0T0 0 0
TAAA AN
T T T T T Generated Samples
* Other works ? ° e OTO ° e OTO °© OT ° 00 ? i = g(zil2<i)
* ClariNet WaveNet Student [© © 200 © Student Output
P(x]z<s)

C O C O OC O

Linguistic features -----+ | O O O O O

.7 T T T T T /. Input noise

© 0 0 0o 0o o 00 0o o0 o0 o0 o0 o 25
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Text to Speech: Flow (vocoder)

 WaveGlow (Bipartite)

* Flow based transformation

z=filofilio.. . fol(®) = fpofi0...fr(2) z ~ N(z;0,1)

* Affine Coupling Layer

—_——— ] ——E—Z——/ Xa xf)
. T =8O xp +t 3 :
Zq, Ty = split(x) » : ok i affine | 1 T
(log s,t) = W N (x,, mel-spectrogram) coupling (L) = concat(Tq, Ty/) | 1| coupling layer | | affine
X12 | | Z 3 l xform
| invertible 1x1 | | 4
I .
) . | convolution | p WN
Other works | [ convaution X I
* FloWaveNet il
squeeze to X, X,
 WaveFlow vectors
5
X upsampled

mel-spectrogram
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Text to Speech: Flow (acoustic model)

e Glow-TTS

det 5f;ei(:v)‘
* Log likelihood Ox

log Px (z|c) = log Pz(z|c) + log
T,

* Prioris learnt from phoneme text 108 Pz(zleif:4) = 3 Tog N (=i ). o)

=1

e Alignment A is obtained by monotonic alignment search

IVIeI—Speitrogram MeI~Spe4c\trogram
° O O O O O O O [ Decoder ] [ Decoder ]
5 Monotonic Alignment SEQM Alignment Genera ti(m/
2 ] I BR000 -
§ Q00 (3 .1 )
-ﬂ;_ A OO O 2 La‘.ur SN [emmm— . 2 Ceil
0000000 e H n | VL H -T
Latent Representation z ‘ 0 O’) uo (18 12 09) ‘ ‘) @ wa (18 12 09)
A
¢ Other Works ( Pro?ect ] ( Duration}t’redictor ] ( Pr:j\ect ) [ Duration Predictor )
* FlowTTsS, Flowtron
L. stop_gradient
 EfficientTTS 100 100
[ +d ] [ }rd J
" Encoder Encoder
QO Meta & Microsoft £ £

a b c a b c



Text to Speech: GAN

N Meta

* Adversarial loss  ;, .c) - 5., (D) -1+ (D(G(o))

Lag(G; D) =E, [ (D(G(s)) —1)?

» Category of GAN based vocoders

Microsoft

GAN Generator Discriminator Loss

WaveGAN [68] | DCGAN [287] \ / WGAN-GP [97]

GAN-TTS [23] / \ Random Window D Hinge-Loss GAN [198]
o, LS-GAN [231]

MelGAN [178] / Multi-Scale D Feature Matching Loss [182]

Par.WaveGAN [402] WaveNet [254] / LS-GAN,

Multi-STFT Loss

HiFi-GAN [174]

Multi-Receptive
Field Fusion

Multi-Period D,
Multi-Scale D

LS-GAN, STFT Loss,
Feature Matching Loss

VocGAN [408]

Multi-Scale G

Hierarchical D

LS-GAN, Multi-STFT Loss,
Feature Matching Loss

GED [96]

Random Window D

Hinge-Loss GAN,
Repulsive loss
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Text to Speech: GAN (vocoder)

* HiFIGAN

* Multi-Scale Discriminator (MSD)
* Multi-Period Discriminator (MPD)

Discriminator

aw Wavefo E—
Raw I eform Block
Discriminator
Av gruol —_— Block
' Discriminator ‘
Avg Pool — Block
Raw Waveform _ [ Conv Layer

(downsampled)

!

Downsampling [4x]
Layer

!

Conv Layer

!

Conv Layer

QO Meta g8 Microsoft

Feature maps
+ output

Fl‘ilTlll'(‘ maps
+ output

Feature maps
+ output

— Feature map

— 4x Feature maps

— Feature map

— Output

time
—_—

o000 0O0COCOOGOOEC®

height

width
..Ol
00
00

l Reshape from 1D to 2D

@

Apply Convolution
with a kX1 kernel

MPD[2]

!

Real / Fake
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Text to Speech: Diffusion

 Diffusion probabilistic model
* Forward (diffusion) process: q(x1.7]%0) = Hq(xt|xt Dy q(xelxi—1) = N(xe; /1 = Bixi_1, BI)
T

* Reverse (denoising) process po(xo:r) = pxr) [ polxemilxe). polxemt|xe) = N (k-1 pto (1. 1), So (1, )
t=1

Forward diffusion: Data -> Noise

75
Reverse diffusion (neural network): Noise -> Data D

AP A wwmwmmm[j

x q(z1|x q(z2|z
Gaata (7o) 1lzo) 2|71) diffusion iffusion process

------

IEVErse process process
Po $0|$1) $1|$2 Pa(l’T 1|$T platent(ﬂfT)

:LTIxT 1)
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Text to Speech: Diffusion

* Loss derived from ELBO: Liinpie(0) = Ep x, « [||e —ep (x0,1)|?

* Training and inference process

Algorithm 1 Training Algorithm 2 Sampling
fori =1,2, -+, Niter do Sample z7 ~ pragens = N (0, 1)
Sample 2o ~ Gqata, € ~ N (0, ), and fort =TT —1,---,1do
t ~ Uniform({1,--- ,T}) Compute pg(x¢,t) and og (x4, t) using Eq. (5)
Take gradient step on Sample zt 1 ~ po(xi—_1|s) =
Volle — eo(varzo + /1 — due, t)]|3 N (@15 po(xe,t), 09 (2e, 1)°1)
according to Eq. (7) end for
end for return z
QO Meta g8 Microsoft
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Text to Speech: Diffusion

Diffusion model for vocoder: DiffWave, WaveGrad

Diffusion model for acoustic model: Diff-TTS, Grad-TTS

Improving diffusion model for TTS
* PriorGrad, SpecGrad, DiffGAN-TTS, WaveGrad 2, etc

With sufficient diffusion steps, the quality is good enough, but latency is high

How to reduce inference cost while maintaining the quality is challenging, and
has a long way to go

N Meta Microsoft



Text to Speech: NAR with human-level quality

NaturalSpeech: achieving human-level quality on LISpeech dataset (CMOS)

Leverage VAE to compress high-dimensional waveform x into frame-level
representations z~q(z|x), and is used to reconstruct waveform x~p(x|z)

To enable text to waveform synthesis, z is predicted from vy, z~p(z]|y)

However, the posterior z~q(z|x) is more complicated than the prior z~p(z|y).

Tan X, Chen J, Liu H, et al. NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality[J]. arXiv 2022

N Meta Microsoft



Text to Speech: NAR with human-level quality

e Solutions in NaturalSpeech

* Phoneme encoder with large-scale phoneme pre-training

» Differentiable durator
 Bidirectional prior/posterior
* Memory based VAE

........ B> On|y in training waveform X
- Training & inference *

Wave Decoder
(with memory)

" T : <
p(z |y)_’ Bidirectional s CI(Z|X)

? Prior/Posterior R
Differentiable Durator Posterior Encoder
1 z
Phoneme Encoder pe
(with phoneme pre-training)

Phoneme y

[Reduce Posterior f~ Fﬁq (z|x)
; F—>KL

p(Z'y)
4
Upsampling Layer - q(z’lx
p(Zy)

(a) Differentiable durator.

[ Phoneme Encoder

7y
Phoneme(phy (phy) (phy) (phy) (] (M)
Sup-Phoneme] SP1 ) (v J(sp )

(c) Phoneme pre-training.

—

Enhance Prior
N orf oGy

(b) Bidirectional prior/posterior.

To Waveform Decoder

Value: Memory Bank M

x
Attention Weights: W

Key: Memory Bank M
Query: z ~ q(z|x)

(d) Memory mechanism in VAE.
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Text to Speech: NAR with human-level quality

* Evaluations of NaturalSpeech
* MOS and CMOS on par with recordings, p-value >> 0.05

Human Recordings NaturalSpeech  Wilcoxon p-value

4.58 +£0.13 4.56 +0.13 0.7145

Human Recordings NaturalSpeech  Wilcoxon p-value

0 —0.01 0.6902

Achieving human-level quality on LISpeech dataset for the first time!

N Meta Microsoft



Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation s rate Token Generation Image Token - e

The values in the last two columns are just for reference
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Singing voice synthesis

Input: lyric/score (phoneme/pitch/duration); output: singing voice

6?... [ — f J JI Jl
g e @ -
Twin-kle, twin-kle, lit - tle star,

Target-source dependency is even stronger than target-target dependency when
compared with text to speech synthesis

» Duration and pitch in score can decide the duration/pitch in singing voice in a large extent
* NARis preferred

Generative models are similar to that used in speech synthesis

Only slight difference in alignment modeling

* Given a rough duration and pitch in music score, predict more accurate duration and pitch in the
singing voice

* Since human cannot always sing according to music score, both in duration and pitch

N Meta Microsoft



Singing voice synthesis

* But singing has its distinctive characteristics other than speaking voice
* Pitch/duration range is wider than speaking

* Data space is larger (Hphoneme * #pitch * #duration) than speech

* Many singing techniques: trill, glide, opera singing, etc
* High expressiveness with high fidelity (e.g., 48kHz)

e e.g., HiFiSinger, a NAR singing model for high-fidelity 48kHz voice

N Meta

Microsoft

Method MOS

Recording (48kHz) 4.03 4+ 0.06
Recording (24kHz) 3.70 £0.08
XiaoiceSing (48kHz) 2.93 £ 0.06
Baseline (24kHz) 3.32 4+ 0.09
Baseline (48kHz) 3.44 + 0.08
HiFiSinger (24kHz) 3.47 £ 0.06
HiFiSinger (48kHz) 3.76 + 0.06
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Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation  pscrete Token Generation Image Token - e

The values in the last two columns are just for reference
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Image Generation

* Traditional image generation is inherently non-autoregressive based on generative
models, like GAN, VAE, Flow and Diffusion model

* GAN suffers from training instability and mode collapse
e VAE suffers from blurriness

* Flow and diffusion model require multiple iterative steps
* Importantly, high-resolution image generation is costly for these methods

N Meta Microsoft



Image Generation

* Arecent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)

* Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with
encoder

» Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens
autoregressively

* Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete
tokens

InpUt Visual Tokens Reconstruction [ } Embedding
Space

/ Decoder \

\ Encoder /
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Image Generation

* Arecent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)

* Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with
encoder

» Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens
autoregressively

* Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete

tokens
real/fake
e | | Codebook 2 (" Transformer I N\ G
&1 . == Ll e
\ v

p(s) =11 p(sils<i) ..

r|f|r|f

(EENEEE ] | L
\ Soi "8
\ s 4

(of']'}
~ Discriminator

argmin, cz |2 — z||

>
B

quantization

151
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Image Generation

* Advantages and disadvantages

* Advantages: first learn composition then render the details, very reasonable
* Disadvantages

* AR generation for discrete tokens, should have no order bias like in language
* Slow in long sequence

Use NAR for discrete token generation!

N Meta Microsoft



Image Generation

* Input: any conditional information, e.g., class tag
e Output: discrete tokens of image

* Target dependency comparison with NLP/Speech tasks
e Language has more target dependency, since contextual symbol
* Speech has correspondence with source text, target dependency is weak
* Image tokens seem to be similar to language, but more similar to speech

NAR image token generation weaker target dependency than NLP,
maybe stronger than text to speech

N Meta Microsoft



Image Generation——MaskGIT

* Use BERT-like mask-predict mechanism to iterative predict discrete tokens

Masked Tokens Predicted Tokens
| | ;:: .l:=l I..I
Masked Visual Token LA : Bidirectional L .
. HEE E EE B BB
Modeling (MVTM) " . Transformer g R |
| = | I. =I [ ]| [ ] l. |
| I W | | |
| [ | = HE B =l |
Sequential
Decoding
with Autoregressive
Transformers
t=120 t =200 t=255
Scheduled
Parallel
Decoding
with MaskGIT
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Image Generation——VQ-Diffusion

» Use diffusion model with a mask-and-replace diffusion strategy to model the
discrete tokens in parallel

Step1: VQ-VAE Codebook
Z1Zy Z3 Zy Zyg
% 24 s 1 g
i o8
Step2: VQ-Diffusion q(xelxe-1)
M1--MM 2 ----" - 24---M3 2 4 113

po (Xt-1|xe,y) —

A single giraffe PP
grassging%eave ' Diffusion Image Decoder \
outside ¢
Bt 5% 5%
= ‘5 2 ‘2 2
8 = m cm
y g o) 2 3

L
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Modality Task Target Target-Source vs | Difficulty of NAR
Target-Target

Text Neural Machine Translation Source language Target language ~ 7 o ok e
Generation  rayt symmarization Long text Short Summarization > ok
Text Error Correction Error Text Correct Text > R
Text Style Transfer Source Text Target text > ok
Dialogue Generation Dialogue Response < ok ke
Speech Recognition Speech Text =7 ke
Speech Text to Speech Text Speech > ok k
Generation Singing Voice Synthesis Score Singing Voice >> kK
Voice Conversion Source Voice Target Voice > e
Speech Enhancement Noisy Speech Clean Speech > *
Image Pixel Generation Class ID Image Pixel - *
Generation  pscrete Token Generation Image Token - e

The values in the last two columns are just for reference
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Outline

e Overview of NAR generation tasks in NLP/Speech/CV
» Target-target vs target-source dependency

* Key tasks
* Neural machine translation
e Text error correction
* Speech to text recognition
» Text to speech/Singing voice synthesis
* Image generation

 Summary of NAR applications

* Benefits of NAR for different tasks
Addressing target-target dependency (model multimodal distributions)
Addressing target-source dependency (learn source-target alignment)
Data difficulty vs model capacity
Streaming vs NAR, AR vs Iterative NAR

N Meta Microsoft



Benefits of NAR: Inference speedup

* |deal speedup for one pass generation
* Text sequence: 10~100
» Speech sequence: spectrogram/500, waveform/80K
* Image sequence: token/256, pixel/65536

e |terative based method

* N/iter, speedup achieved when iter < N
* For example, in TTS, for a speech/spectrogram sequence with 500 frames, a diffusion model with

1000 steps (e.g., Grad-TTS), then 500/1000 no speedup!
* Inference speedup does not necessarily mean low computation/memory

* Computation/memory should be similar as AR model
* NAR leverages parallel computation (e.g., GPU) for speedup

N Meta Microsoft



Benefits of NAR: Beyond inference speedup

Avoid error propagation

. ARkhas exposure bias and error propagation, later tokens will be affected by the accumulated errors in previous
tokens

* NAR has no such exposure bias and propagation

Avoid order bias
* Image has no left-to-right or right-to-left inductive bias

Avoid label bias

Avoid attention collapse
* AR usually leverages encoder-decoder attention to extract source information

* However, enc-dec attention is originally designed for text, may not be suitable for other modalities, such as in text-
to-speech, attention collapse and word skipping/repeating/error

Improve controllability
* AR generates token one-by-one, cannot well control the length or other factors
* NAR can well control length, and generative models like VAE/Flow/GAN/Diffusion support latent manipulation!

AR is not the only way for generative modeling
Embrace Flow/VAE/Diffusion/GAN and other generative models in various tasks!

N Meta Microsoft



Handle multimodal p(x|y)

* Addressing target-source dependency to simplify mutimodal in p(x|y)
* Learn better target-source alignment

* Addressing target-target dependency to better model multimodal
* With advanced generative models (Flow/VAE/Diffusion/GAN, etc)

N Meta Microsoft



Handle multimodal p(x|y)

* Learn source-target alignment or provide more information to reduce multimodality in

p(x|y)

Alignment Method |Task |

Machine translation

Text summarization

Attention
Text style transfer
Dialogue generation
Text error correction
crc Speech recognition
Machine translation
Text to speech/Singing voice synthesis
Duration Text error correction
No Voice conversion/Speech enhancement

HE
QO Meta gg Mi /A Image pixel/token generation

Alignment is vague, not
monotonic, and implicit

Alignment is monotonic
and flexible

Alignment is monotonic
and deterministic

Already aligned well

No fine-grained condition  '°*



Handle multimodal p(x|y)

* Learn source-target alignment or provide more information to reduce multimodality in
p(x]y)
* Alignment methods: attention, CTC, duration

* Providing more information
* e.g., the detailed class tag of an image, a specific class of dog, instead of simply a dog
* e.g. language ID, speaker ID, more variance information (pitch, prosody) in speech
e e.g., more context information in text, such as long sequence processing or document translation

N Meta Microsoft



Handle multimodal p(x|y)

* Addressing target-target dependency with advanced generative models
* Flow/VAE/Diffusion/GAN can be well adopted in image/speech generation
* More works are trying to apply these generative model in text generation
* lterative refinement (e.g., masked predict) is similar to diffusion model (VQ-Diffusion)
* CV/Speech inspire NLP

* There is a trend to discretize high-resolution continuous data (e.g., image, waveform) into low-
resolution discrete tokens (VQ-VAE or Wav2vec)

* NLP inspire CV/Speech

N Meta Microsoft



Data difficulty vs model capacity

* Tradeoff between the data difficulty (the degree of multimodality in p(x|y)) and the
model capacity (representation power or model size)
* Sometimes increase the model capacity can handle the multimodality to some extent
e Extremely case: one model to learn them all!
* Butin some cases, data difficulty cannot be well addressed by simply increasing model capacity
e e.g, NAR in NMT, need a teacher model to distill the data to reduce the data difficulty

N Meta Microsoft



Streaming vs NAR, AR vs iterative NAR

» Streaming vs NAR: Streaming is a scenario that a model processes in real-time when
an input is coming, but not wait for the whole sequence

e Streaming ASR, NMT in online scenario
* In this case, two aspects:

* The advantage of NAR is reduced, since we can process an input chunk very
fast even using AR generation

* The difficulty of NAR is reduced, since we can generate the current chunk in
parallel, conditioned on the output of previous chunk

* AR vs iterative NAR

* AR can be regarded as an extremely case of NAR
* So all is about tradeoff between accuracy and efficiency

QO Meta g8 Microsoft



Outline

* Part I: Introduction (Jiatao Gu)

e Part Il: Methods (Jiatao Gu)
 Part Ill: Applications (Xu Tan)

* Part IV: Open Problems (Xu Tan)

QO Meta g8 Microsoft



Open problems and future directions

* How to address the multi-modal problem in NAR more effectively and efficiently
* Improve the accuracy while maintain the advantage of inference speedup
* Instead of sacrificing the inference speedup with multiple iterations to trade off for accuracy

* Learn better target-source alignment to provide more target-source dependency to reduce target-
target dependency

e Better model target-target dependency with advanced methods

N Meta Microsoft



Open problems and future directions

* Unify all the modality (text, speech, image) in one NAR model?
* Bridge the modality gap among CV/NLP/Speech

* Currently we already see some trend, quantize image/speech into discrete tokens, maybe can unify
in a single discrete token generation?

* For iterative generation, what connection/relationship can we build between diffusion
model (continuous diffusion or VQ-Diffusion), flow model, and iterative refinement
methods like Mask-Predict in NLP? What insight we can get to further inspire new
methods?

 What is the challenges and opportunities in other sequence generation tasks beyonf
NLP/Speech/CV?
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Non-Autoregressive Sequence Generation

JiataoGu and XuTan
Meta Al Research and Microsoft Research Asia

https://github.com/NAR-tutorial/acl2022
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https://github.com/NAR-tutorial/acl2022

Hiring at Microsoft Research Asia!

* Research FTE (social/campus hire)

* Generative Models and Data Generation
* Machine Learning, Deep Learning

* NLP (NMT, Summarization, Conversation, Pre-training, etc)
* Speech (TTS/ASR)

* Research Intern
e Speech, Music, NLP, ML

Machine Learning Group, Microsoft Research Asia
Xu Tan xuta@microsoft.com

https://www.microsoft.com/en-us/research/people/xuta/

N Meta Microsoft
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https://www.microsoft.com/en-us/research/people/xuta/

Thank You!
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