

Non-autoregressive Sequence Generation

Jiatao Gu, Meta Al Xu Tan, Microsoft Research Asia

https://github.com/NAR-tutorial/acl2022

Speaker information

- Jiatao Gu (顾佳涛)
- Research Scientist @ FAIR Labs, Meta AI
- Research interests:
 - Generative Models, NLP, 3D and multimodal learning, Deep Learning
- Some links
 - Homepage: <u>https://jiataogu.me/</u>
 - Google Scholar: https://scholar.google.com/citations?user=cB1mFBsAAAAJ

Speaker information

- Xu Tan (谭旭)
- Senior Researcher @ Microsoft Research Asia
- Research interests: deep learning, NLP/Speech/Music, data generation
 - NMT, text generation, language pre-training
 - TTS, ASR, Al Music
- Some links
 - Homepage: <u>https://www.microsoft.com/en-us/research/people/xuta/</u>
 - Google Scholar: https://scholar.google.com/citations?user=tob-U1oAAAAJ

Outline

- Part I: Introduction (Jiatao Gu)
- Part II: Methods (Jiatao Gu)
- Part III: Applications (Xu Tan)
- Part IV: Open Problems (Xu Tan)

https://github.com/NAR-tutorial/acl2022

Non-Autoregressive Sequence Generation

(Part I: Introduction)

Neural Sequence Generation

- Many real-world applications can be seen as **sequence generation**!
 - We can transform any structured data into sequence
 - For instance, speech as wave sequence; images can be flattened into pixel sequences, etc.

Autoregressive (AR) Sequence Generation

• Generate sequence token by token in an autoregressive way

• Factorize the joint probability in a chain rule

$$p(\mathbf{x}) = \prod_{i=1}^n p(x_i | x_1, x_2, \dots, x_{i-1}) = \prod_{i=1}^n p(x_i | \mathbf{x}_{< i})$$

- Has been poplar in many sequence generation tasks (NLP, speech, CV)
 - Can be implemented with RNN/CNN/Transformer
 - Can be unconditional (a single decoder) or conditional (encoder-decoder)

Popular models in AR: Transformer & LLM

- Transformer (2017)
 - Unleash the modeling power by removing the inductive bias in RNN and CNN

through QKV attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- Has become the model backbone for NLP, Speech and CV
- GPT-1/2/3
 - Large-scale pre-training models using autoregressive Transformer

Transformer & LLM

• Zero-shot / One-shot in-context learning with LLM

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1 Translate English to French: Image: task description 2 cheese => prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

• Multi-modal generation (DALLE-1)

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

Then, why do we want to explore other alternatives

Why do we care?

- Text generation models are mostly autoregressive
- Each step needs a forward pass of deep Transformer layers.

AR model is slow

• Inference time linearly grows with sequence length

- Time consuming in real-time scenarios, especially for long text/speech/image sequence
 - Text: 10~100
 - Speech: 500 for spectrogram or 80K for waveform for a 1s speech
 - Image: 65536 (256*256) for pixel and 256 (16*16) for tokens

Harmful biases in AR generation

- Exposure bias
 - Exposure bias: ground-truth tokens are taken as input in training (teacher-forcing), but predicted tokens are taken as input in inference (free-run)
 - Error propagation: later tokens will be affected by the accumulated errors in previous tokens
- Label bias
 - The normalization constraint over vocabulary items at each decoding step in autoregressive models poses a harmful inductive bias which leads to learning miscalibrated distributions over tokens and sequences
- Order bias
 - Left-to-right generation may not be the best order for generation, or some data prefers no order

Non-autoregressive Text Generation

- Can we synthesize text in parallel like typical image synthesis?
- We propose the first non-autoregressive translation (NAT) model, which builds on top of Transformer.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive neural machine translation. *ICLR 2018*

Evaluation protocol

How can we compare the performance between AR and NAR systems?

- Standard benchmark:
 - Machine Translation, WMT14 En \rightarrow De 12
- Quality measure
 - BLEU score
- Efficiency measure
 - Latency (GPU batch=1, batch=full and CPU batch=1)
- Quality-efficiency trade-off figure

Why is NAR difficult?

• The original NAR system is far from the AR baselines.

Models	BLEU		
Autoregressive Baselines	27.48		
NAT	17.69		
NAT with reranking	19.17		

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive neural machine translation. *ICLR 2018*

Why is NAR difficult?

Typical errors made by a NAR system:

- Repetitive tokens (over generation)
- Shorter or broken sentences (under generation)
- Influent sentence (no/weak language model)

Fundamental issue:

- The independence assumption in the output space ignores the real dependency between target tokens.
- Maximum-likelihood training force to cover all possible modes

Why is NAR difficult?

How AR system solve this problem?

- P(Vielen) * P(Dank|Vielen) * P(<eos>|Vielen Dank)
- P(Danke) * P(schon|Danke) * P(<eos>|Danke schon)

AR model explicitly models the dependency in the target space. Generation is to make choice at each step and affect the next choice.

- P(Vielen) * P(Dank)
- P(Danke) * P(schon)

How can we improve NAR models to match AR systems?

Xiao, Y., Wu, L., Guo, J., Li, J., Zhang, M., Qin, T. and Liu, T.Y., 2022. A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond. arXiv preprint arXiv:2204.09269. 18

🕫 Meta 🗧 Microsoft

Non-Autoregressive Sequence Generation

(Part II: Methods)

A principled goal

- The main challenge of NAR generation is *"failure of capturing the target side dependency"*.
- Overall instructions:

Methods	Overall instructions
Model architecture	Improve the model's capability of capturing target-side dependency
Objective function	Provide learning signal that resolves uncertainty
Training data	Reduce the target-side dependency in the training
Learning paradigm	Better paradigm to ease the difficulty of learning
Inference techniques	Additional techniques that improve the final performance

Model Architecture

Fully NAR Models

- The simplest way of generating tokens in parallel.
 - Time complexity: O(1)
 - Pros:
 - Simple to implement
 - Fastest decoding
 - Easy to incorporate other improvements.
 - Difficulties:
 - Relatively worst performance
 - **CANNOT** handle target token dependencies without other improvements
 - Hard to work well on LONG sequences.

Example 1: vanilla NAT model

- Following the initial work, we can simply implement such vanilla NAR by removing causal masking in the Transformer decoder.
- Inputs to the decoder:
 - Special mask tokens
 - Soft-copy of encoder's hidden states or embeddings
- Naïve implementation is very bad:
 - ~10 BLEU on raw dataset.

Encoder

Thanks a lot

Encoder-Decoder

Attention

SoftCopy

Vielen Dank

NAR

Decoder

Fully NAR model + tiny AR layer

- As a special case, fully NAR systems can be significantly improved by adding a small AR layer in the output. It will help to model the "missing" target side dependency without sacrificing too much on latency.
- It is technically autoregressive, while most of the computation is done in the NAR part. In this sense, it is very different from typical Transformer-based models.
- Tiny AR layer can be:
 - N-gram LM
 - CRF
 - Tiny RNN (e.g. ,1-layer GRU or SRU)

Example 2: NAR + CRF layer

By adding the conditional random fields (CRF) on top of the original NAR model's output, it considers the dependency of the neighbors:

$$P(y|x) = \frac{1}{Z(x)} \exp\left(\sum_{i=1}^{n} s(y_i, x, i) + \sum_{i=2}^{n} t(y_{i-1}, y_i, x, i)\right)$$

- Apply low-rank/beam approximation to make the transition feasible for large vocabulary.
- Decoding is sequential but much faster than typical AR models.
 z. Sun, Z

🕫 Meta 🗧 Microsoft

Z. Sun, Z. Li, H. Wang, D. He, Z. Lin, and Z. Deng, "Fast structured decoding for sequence models," NeurIPS, vol. 32, pp. 3016–3026, 2019.

Partially NAR models

- AR at sequence level, output multiple tokens in parallel
 - In the middle between AR and fully NAR models
 - Time complexity: O(N/K) (K is the segment length)
 - Pros:
 - Produce better performance
 - If tuning properly, it can achieve the same performance as AR
 - Difficulties:
 - Globally still AR, it did not change the linear complexity
 - Speed-up is small

Example 3: n-gram decoding

• Decode multiple tokens in parallel (usually n-gram), and then the overall sentence is still autoregressive.

$$p(y_1 \dots y_n | \mathbf{x}) = \prod_{t=1}^{[(n-1)/K]+1} p(G_t | G_1 \dots G_{t-1}, \mathbf{x})$$

• Relaxed causal mask: a block-wise attention which can make max use of the decoded contexts.

[1	0	0	0	0	0]	[1	1	0	0	0	0]
1	1	0	0	0	0	1	1	0	0	0	0
1	1	1	0	0	0	1	1	1	1	0	0
1	1	1	1	0	0	1	1	1	1	0	0
1	1	1	1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

C. Wang, J. Zhang, and H. Chen, "Semi-autoregressive neural machine translation," in EMNLP, 2018, pp. 479–488

Example 4: Block-wise decoding

- A dynamic approach compared to "fixed" n-gram prediction...
- The model has three stages:
 - Prediction: each step the NAR mode predict an n-gram block.
 - Verification: compare the predi NAR model, and the AR teacher's prediction in a *teacher forcing* matter.
 - Accept the sequence with longest match and move to predict next block.

Due to the use of AR teacher for verification, the model's performance is guaranteed not worse than AR models, while achieving 3x-4x speed-up!

executed in parallel

Stern, M., Shazeer, N. and Uszkoreit, J., 2018. Blockwise parallel decoding for deep autoregressive models. Advances in Neural Information Processing Systems, 231.

Locally AR models

- NAR at sequence level, output each segment in AR
 - In the middle between AR and fully NAR models
 - Time complexity: ~O(K) (K is the segment length)
 - Also have similarities to NAR + tiny AR layer.
 - Pros:
 - Produce better performance
 - Motivated by the fact the NAR models deal with local dependencies badly, e.g., repetitive words.
 - Faster generation compared to previous type
 - Difficulties:
 - Need **complex algorithm** to merge the output or resolve conflicts between each position.

Example 5: Neural Phrase-based Translation

- Pre-transformer era work, still based on RNNs.
- Similar to traditional statical machine translation, model is learned to translate phrase independently with local RNNs.
- Merging phrases need to run dynamic programming (DP) which limits its application to high-resource domains.

Huang, P.S., Wang, C., Huang, S., Zhou, D. and Deng, L., 2018, February. Towards Neural Phrasebased Machine Translation. In International Conference on Learning Representations. ³⁰

Example 6: Local autoregressive translation (LAT)

- Similar to NPMT, this paper also learned to predict local sequence with a small RNN locally.
- No DP needed, but a heuristic merging operation based on longest common string between two positions.
- Different from NAR + tiny RNN, it is still constant time. Because of the local AR, it can mostly remove artifacts like repetition.

X. Kong, Z. Zhang, and E. Hovy, "Incorporating a local translation mechanism into non-autoregressive translation," in EMNLP, 2020, pp. 1067–1073

Iteration-based Models

- Generate/refine the sequence iteratively. For each iteration, the sequence output in based on N
 - Time complexity: O(K) or O(logN) (depending methods to use)
 - Pros:
 - General and simple to implement. The sector of fully NAR models.
 - Best performance so far for NAR Meets
 - Difficulties:
 - Trade-off between quality and latency.
 - The speed-up advantage challenged by "Deep encoder, shallow decoder".

Due to time limits, we only introduce some classical models in this categories. We refer the readers to the reading list for more and recent approaches!

 $y_1 y_2 y_3 \dots$

TS

Kasai, J., Pappas, N., Peng, H., Cross, J. and Smith, N.A., 2020. Deep encoder, shallow decoder: Reevaluating non-autoregressive machine translation. arXiv preprint arXiv:2006.10369.

Example 7: Mask-Predict

• Following similar training tasks of BERT (masked language model), we can directly use the mask prediction model for iterative generation.

• BERT training 15%, while CMLM is trained by randomly masking 0~100% tokens.

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

🕫 Meta 📕 Microsoft

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, "Maskpredict: Parallel decoding of conditional masked language models," in EMNLP-IJCNLP, 2019, pp. 6112–6121.

- The BERT-style training did not tell us how should we inference in the testing time.
 - As it is just forcing the model to predict the masked tokens from the remaining.
- Skeptical decoding -- an annealingbased method was used for iterative translation
 - Set the target iteration T.
 - Start with all masks;
 - For each iteration t, make the prediction, and then mask (1-t/T) * N tokens with lowest scores.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, "Maskpredict: Parallel decoding of conditional masked language models," in EMNLP-IJCNLP, 2019, pp. 6112–6121.

Example 8: Insertion Transformer

- There is not only one way to perform iterative generation. Sentence can also be composed by insertion!
- Mask-Predict is constrained to know (predict) the length before generation, while with insertion, it is possible to generate sequences in any lengths during iteration.
- Generation terminates if all positions are not insertable. The complexity is logarithm.

<s> friends ate together </s>

M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, "Insertion transformer: Flexible sequence generation via insertion operations," in ICML. PMLR, 2019, pp. 5976–5985

Example 9: Levenshtein Transformer (LevT)

- With one step further, LevT combines insertion & deletion, which means the model can freely edit over the generation, change the length and terminate the iteration in a dynamic way.
- For each iteration, it contains three forward passes:
 - Parallel deletion

🕫 Meta 📕 Microsoft

Parallel insertion (predict # of ٠ masks, mask prediction)

J. Gu, C. Wang, and J. Zhao, "Levenshtein transformer," NeurIPS, vol. 32, pp. 11 181–11 191, 2019
- LevT is trained through **imitation learning**, with a dual policy (simplifie version):
 - Learning to insert tokens by predicting random deletion;
 - Learning to delete tokens by fixing errors made by insertion;
- The expert action are automatically generated based on Levenshtein distance with ground-truth.

Figure 2: The data-flow of learning.

An example of iterative refinement using LevT: •

(a)	a)Thetoohighrotationspeedproduces しかし,回転速度が大きすぎると,逆向きの変形が生 thereversedeformation .					
	(iteration 1)	nothing to delete >>				
		insert >>	[][回転][回転]]すぎ][ると][逆][変形][が生じる][。]			
	(iteration 2)	delete >>	[<u>_</u>][回転][回転][すぎ][ると][逆][変形][が生じる][。]			
		insert >>	[][回転][速度が][すぎ][ると][,][逆][変形][が生じる][。]			
	(iteration 3)	nothing to delete >>	[<u>_</u>][回転][速度が][すぎ][ると][,][逆][変形][が生じる][。]			
		insert >>	[][回転][速度が][高][すぎ][ると][,][逆][変形][が生じる][。]			
	nothing to delete, nothing to insert >>		[Terminate]			
(b)	Somepossiblestructuresandcircuits wereproposedandverified .		────►いくつかの可能な構造と回路を提案し検証した。			
	(iteration 1)	nothing to delete >>				
		insert >>	[][可能な][構造][回路][回路][を提案し][,][検証した][。]			
	('I.a. a. I'.a. a. C `	delete >>	[<u>]</u> [可能な][構造][回路][回路][を提案し][,][検証した][。]			
	(Iteration 2)	insert >>	[][いくつかの][可能な][構造と][回路][を提案し][,][検証した][。]			
	nothing to del	lete, nothing to insert >>	[Terminate]			

J. Gu, C. Wang, and J. Zhao, "Levenshtein transformer," NeurIPS, vol. 32, pp. 11 181–11 191, 2019

Speed-up of LevT compared to CMLM (constant time) and ٠ Insertion Transformer (logarithm time)

J. Gu, C. Wang, and J. Zhao, "Levenshtein transformer," NeurIPS, vol. 32, pp. 11 181-11 191, 2019

Model Architecture

Latent Variable Models for NAR generation

The concept of "latent variables" are very important for NAR!

- The additional variables are used to capture uncer
- Iteration-based models can also be seen as "late
 - All the intermedia decoding results can be seen a
 - Y0 (all masks) \rightarrow Y1 \rightarrow Y2 \rightarrow ... \rightarrow YT (target seq

Why latent variables will be useful in NAR genera

Suppose we only have three translation for this sentence, and we determine one mode first, then the output can be generated in NAR!

Thank you

Vielen Dank Danke schön Danke

Latent variables

Z=1

Z=2

Latent Variable Models for NAR generation

 Normally, we need to marginalize the latent variables, or maximize the evidence lower bound (ELBO):

$$L_{ELBO} = \mathbb{E}_{q(Z|X)}[\log P(X|Z) + \log P(Z)] + H(q)$$

 In practice, we can either choose to work on pre-defined "latent variables" with some off-the-shelf predictor or learn everything jointly (e.g., VAEs).

Length predictor

Meta

Most NAR systems at least have one "latent variable" – length

- AR model usually uses the special symbol <eos> to show the end of generation, and the length is determined when the generation ends.
- However, for most NAR models (except for CTC-based models) need to pre-determine the "length" before NAR generation can starts. In this sense, length itself can also be used to capture some dependency information!

Length predictor

Types of length predictor:

- Training a separate classifier to predict the correct length
 - Using the encoder's hidden states and pooling
 - Using specific [LENGTH] token in the encoder
- Statistics
 - In some work, it is also possible to directly use the dataset statistics

$$T_y = \alpha T_x + B$$

• Mostly, B is the size of length beam, and it relies on the re-ranking.

Intermedia predictors

It is a vague categories, which refers to modeling **latent variables**:

- With clear definitions / meanings
- Predictable given the target or source-target pairs
- Off-the-shelf predictors are available (and typically fixed) to predict these information
 - Not optimal, and the performance affected by the predictor.

Length can be seen as a special "latent variable" as we don't need to separate inference network to infer that.

Example 10: Fertility predictor

- Fertility: how many words each • source token will be translated to, which is estimated by alignment tools.
- Fertility can also be predicted • in a NAR way.
- Bonus point: we don't need • additional length predictor as we can add fertilities together.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive neural machine translation. ICLR 2018 47

Example 11: ReorderNAT

- Fertility can only partially help the translation, while it is not possible to handle reordering in MT.
- ReorderNAT used an additional module to predict reordering (which can be either NAR or lightweight AR model).
- Ordering can also be obtained from alignment tools.

Meta

Microsoft

Q. Ran, Y. Lin, P. Li, and J. Zhou, "Guiding non-autoregressive neural machine translation decoding with reordering information," in AAAI, vol. 35, no. 15, 2021, pp. 13727–13735

Example 12: SynST

🕫 Meta 🗧 Microsoft

- Similar to ReorderNAT, we can also plug-in • other type of predictors in the middle of encoder and decoder.
- SynST learns to autoregressively predict "high-level" chunks using a light-weight AR model, and then generate texts based on these chunks.
- Chunk information can be obtained from a syntactic parser.

N. Akoury, K. Krishna, and M. Iyyer, "Syntactically supervised transformers for faster neural machine translation," in ACL, 2019, pp. 1269–1281. 49

Variational Autoencoders

Different from the previous case, such models are more general

- Latent variables have NO clear definitions / meanings
- Need to optimize both the generator and the encoder (and potentially also the prior).

Basically, we can either model it with Continuous VAE or Discrete VAE.
 Both have pros and cons.

Example 13: Continuous VAEs (LaNMT)

🕫 Meta 📕 Microsoft

R. Shu, J. Lee, H. Nakayama, and K. Cho, "Latent-variable non-autoregressive neural machine translation with deterministic inference using a delta posterior," in AAAI, vol. 34, no. 05, 2020, pp. 8846–8853.

Problem of simple VAEs

- Spherical Gaussian prior is typically too weak to capture complex dependencies.
 - The mean vector of the prior is usually far from the posterior.
- Iterative inference with delta posterior

$$\begin{split} \mu_0 &= \mathbb{E}_{p_\omega(z|x)} \left[z \right] \\ y_0 &= \operatorname{argmax}_y \log p_\theta(y|x, z = \mu_0) \\ \text{for } t \leftarrow 1 \text{ to } T \text{ do} \\ \mu_t &= \mathbb{E}_{q_\phi(z|x, y_{t-1})} \left[z \right] \\ y_t &= \operatorname{argmax}_y \log p_\theta(y|x, z = \mu_t) \\ \text{if } y_t &= y_{t-1} \text{ then} \\ \text{ break} \end{split}$$

output y_t

Microsoft

ØMeta

R. Shu, J. Lee, H. Nakayama, and K. Cho, "Latent-variable non-autoregressive neural machine translation with deterministic inference using a delta posterior," in AAAI, vol. 34, no. 05, 2020, pp. 8846–8853.

Example 14: Continuous VAEs + EBM

- As a follow-up, it is also possible to train an energy function to estimate gradients in the continuous space.
- The goal is to find z closer to the posterior more efficiently!

Algorithm 1: Inference for Latent Variable			
Models using Learned Gradients			
Input : $\mathbf{x}, \alpha, \theta, \psi$			
Output : ŷ			
let $\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim p_{\theta}(\mathbf{z} \mathbf{x})}[\mathbf{z}]$			
while termination condition not met, do			
$\mathbf{z} = \mathbf{z} - \alpha \cdot (\nabla_{\mathbf{z}} E_{\psi}(\mathbf{z}; \mathbf{x}))$			
end			
$\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{v}} \log p_{\theta}(\mathbf{y} \mathbf{z}, \mathbf{x})$			

Lee, J., Shu, R. and Cho, K., 2020. Iterative refinement in the continuous space for non-autoregressive neural machine translation. *EMNLP 2020* (pp. 1006-1015).

53

Example 15: FlowSeq

 Another direction is to actively learn a more complex prior

 Flowseq is a model which uses flow to map Gaussian noise to a complex prior.

X. Ma, C. Zhou, X. Li, G. Neubig, and E. Hovy, "Flowseq: Non-autoregressive conditional sequence generation with generative flow," in EMNLP-IJCNLP, 2019, pp. 4282–4292.

Example 16: Discrete VAEs (VQ-VAE)

- Training of VQ-VAE for NAR generation are usually two steps:
 - Learning the encoder and decoder
 - Learning the AR prior over the discrete symbols.
- Although the prior part is based on AR, it is typically shorter than the original length.

L. Kaiser, S. Bengio, A. Roy, A. Vaswani, N. Parmar, J. Uszkoreit, and N. Shazeer, "Fast decoding in sequence models using discrete latent variables," in ICML. PMLR, 2018, pp. 2390–2399.

Roy, A., Vaswani, A., Neelakantan, A. and Parmar, N., 2018. Theory and experiments on vector quantized autoencoders. arXiv preprint arXiv:1805.11063.

Example 17: Discrete VAEs (latent-GLAT)

Recently, there are also papers applying NAR generation in the discrete codes as well.

Compared to the typical framework that relies on AR model to generate the prior, it seems more efficient to generate them iteratively.

Y. Bao, H. Zhou, S. Huang, D. Wang, L. Qian, X. Dai, J. Chen, and L. Li, "latent-glat: Glancing at latent variables for parallel text generation," ACL, 2022.

A principled goal

- The main challenge of NAR generation is *"failure of capturing the target side dependency"*.
- Overall instructions:

Methods	Overall instructions
Model architecture	Improve the model's capability of capturing target-side dependency
Objective function	Provide learning signal that resolves uncertainty
Training data	Reduce the target-side dependency in the training
Learning paradigm	Better paradigm to ease the difficulty of learning
Inference techniques	Techniques that improve the final performance

Objective Functions

Cross Entropy

• Most NAR models apply the standard loss function (cross-entropy) for training

$$\mathcal{L}_{CE} = -\sum_{t=1}^{T} \log P(y_t | X; \theta)$$

• Standard cross entropy will compare tokens one by one between model prediction and ground-truth, which requires the length has to be correct!

Problems of Cross Entropy

• Over penalty for mis-alignment! (For AR model it is not an issue)

a. Ref : Vielen Dank !
b. Pred: , Vielen Dank
a. Ref : Vielen Dank !
b. Pred: , Vielen Dank

- Token-level CE does not consider the global correctness, which aggravates the weakness in capturing target side dependency.
- Maximum likelihood training will tend to cover **all possible mode**s, however, as we discussed, NAR model lack the ability of capture target side dependencies.

Example 18: CTC & AXE

- Inspired from ASR literature, we replace can replace objective with CTC that marginalizes all possible alignments
 - It assumes output always longer than the target, which in text generation we need to up-sample the decoder.
 - The final output is decoded by collapsing repetitive tokens.

$$\mathcal{L}_{\text{CTC}} = -\sum_{a \in \beta(y)} \prod_{i} p(a_i | x, \theta)$$

- Similarly, AXE is another loss using the monotonic alignment to improve cross entropy
 - Difference from CTC: (1) no need to up-sample; (2) using DP to find the best alignment instead of marginalizing the alignments.

$$\mathcal{L}_{\text{AXE}} = -\sum_{t=1}^{T} \log P_{\alpha}(y_t | X; \theta) - \sum_{k \notin \theta} P_k(\epsilon)$$

i Meta

Microsoft

J. Libovickỳ and J. Helcl, "End-to-end non-autoregressive neural machine translation with connectionist temporal classification," in *EMNLP*, 2018, pp. 3016–3021.

G. Marjan, V. Karpukhin, L. Zettlemoyer, and O. Levy, "Aligned cross entropy for non-autoregressive machine translation," in ICML. PMLR, 2020, pp? 3515–3523

Example 19: OAXE

- Both CTC and AXE can only resolve the mismatch when for "monotonic" alignment, while in practice re-ordering exists in real data, especially for tasks such as MT.
- Order-agnostic cross-entropy (OAXE) loss applies the Hungarian algorithm to find the best possible alignment, which allows non-monotonic alignments in NAR generation.

$$\mathcal{L}_{OAXE} = \underset{O^i \in \mathbf{O}}{\operatorname{argmin}} \left(-\log P(O^i | X) \right)$$

C. Du, Z. Tu, and J. Jiang, "Order-agnostic cross entropy for non-autoregressive machine translation," in ICML. PMLR, 2021, pp. 2849–2859.

Example 20: N-gram loss

- [a] N-gram level loss minimizes the Bag-of-Ngrams (BoN) difference between the model output and the reference sentence.
- [b] proposed "edit invariant sequence loss (EISL)" to replace CE, which also focuses on n-gram matching as convolution.

Desired output:	а	cat	is	on	the	red	blanket	
Noisy target:	а	cat	is	is	on	the	red	blanket
	а	cat	is	is	on	the	red	blanket
	а	cat	is	is	on	the	red	blanket
	а	cat	is	is	on	the	red	blanket
	а	cat	is	is	on	the	red	blanket

[a] C. Shao, J. Zhang, Y. Feng, F. Meng, and J. Zhou, "Minimizing the bag-of-ngrams difference for non-autoregressive neural machine translation," in AAAI, vol. 34, no. 01, 2020, pp. 198–205.

[b] G. Liu, Z. Yang, T. Tao, X. Liang, Z. Li, B. Zhou, S. Cui, and Z. Hu, "Don't take it literally: An edit-invariant sequence loss for text generation," *arXiv preprint arXiv:2106.15078*, 2021.

Example 21: ENGINE

- We can further go from n-gram level to entire sequence level with a learned energy function.
- In ENGINE, a pretrained AR model is used as an energy score for evaluating the output globally.
- Gradient is passed via straight-through / softmax during training.

L. Tu, R. Y. Pang, S. Wiseman, and K. Gimpel, "Engine: Energybased inference networks for non-autoregressive machine translation," in ACL, 2020, pp. 2819–2826 65

Example 22: GANs

- Extending similar ideas from learning with a pretrained energy function, it is also possible to learn jointly!
- For example, it might be useful to train text-GAN in NAR settings.

Huang, F., Guan, J., Ke, P., Guo, Q., Zhu, X. and Huang, M., 2020. A text GAN for language generation with non-autoregressive generator.

A principled goal

- The main challenge of NAR generation is *"failure of capturing the target side dependency"*.
- Overall instructions:

Methods	Overall instructions
Model architecture	Improve the model's capability of capturing target-side dependency
Objective function	Provide learning signal that resolves uncertainty
Training data	Reduce the target-side dependency in the training
Learning paradigm	Better paradigm to ease the difficulty of learning
Inference techniques	Techniques that improve the final performance

Sequence-level Knowledge Distillation (KD)

- Knowledge distillation
 - Use the soft logit probability prediction from a teacher model to teach a student model

- Knowledge distillation in sequence tasks
 - Token-level knowledge distillation
 - The logit probability of each token is used to teach student
 - Sequence-level knowledge distillation
 - The sequence generated by the teacher model is used to teach student

Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7). Kim Y, Rush A M. Sequence-level knowledge distillation[J]. arXiv preprint arXiv:1606.07947, 2016.

Sequence-level Knowledge Distillation (KD)

- Distillation at sequence level can significantly improve NAT systems:
 - 1. train teacher autoregressive model
 - 2. replace targets with teacher's prediction
 - 3. train NAT models on the synthetic pairs
- Almost all NAT systems benefit from KD:

	w/o distillation	w/ distillation
Vanilla NAT (Gu et al, 2017)	11.4	19.5 (+8.1)
FlowSeq (Ma et al, 2019)	18.6	21.7 (+3.1)
LevT (Gu et al, 2019)	25.2	26.9 (+1.7)

•

Why KD works?

- Simplify the data distribution of target data, and thus reduce target data dependency
 - Data is complicated, the teacher (AR) model only learn the most dominated distribution from the data
 - During beam search/sampling, the most probability data pattern is generated instead of the whole data distribution
 - E.g., "Thank You" → "Vielen Dank" or "Danke", after distillation may only have "Danke" in German, reduce the multi-modality of target data

C. Zhou, J. Gu, and G. Neubig, "Understanding knowledge distillation in nonautoregressive machine translation," in ICLR, 2019

How KD works?

Quantitive results: A cross-entropy based measure is used for dataset complexity and prepare distilled data from different teacher models.

C. Zhou, J. Gu, and G. Neubig, "Understanding knowledge distillation in nonautoregressive machine translation," in ICLR, 2019

How KD works?

NAR models perform the best when the data complexity matches the model's capacity

C. Zhou, J. Gu, and G. Neubig, "Understanding knowledge distillation in nonautoregressive machine translation," in ICLR, 2019

Problems of KD

- KD makes the training pipeline too long
 - You always need to first train an AR model as the teacher

 The capacity of NAT models should be correlated with the complexity of the distilled dataset

• KD hurts the lexical choice especially on low-frequency words.

A principled goal

- The main challenge of NAR generation is *"failure of capturing the target side dependency"*.
- Overall instructions:

Methods	Overall instructions
Model architecture	Improve the model's capability of capturing target-side dependency
Objective function	Provide learning signal that resolves uncertainty
Training data	Reduce the target-side dependency in the training
Learning paradigm	Better paradigm to ease the difficulty of learning
Inference techniques	Techniques that improve the final performance
Learning paradigm

Multi-task and Curriculum Learning

- Directly learning NAR models over a given dataset is hard, and easily gets stuck into bad optimum.
- NAR models can effectively benefit from learning multiple (easier) tasks jointly, with a better curriculum
- Easier tasks:
 - Learning with partially masked input
 - Learning with partially autoregressive generation
 - Learning on smaller granularity

Example 23: GLAT

- In the original Mask-Predict, it is found that when training on sequences with different mask ratio, the performance of single iteration model is better than those trained directly on "full-mask" settings.
- Such results in fact indicate that, when training NAR models, it is beneficial to ease the difficulty by jointly training on glanced targets.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, "Maskpredict: Parallel decoding of conditional masked language models," in EMNLP-IJCNLP, 2019, pp. 6112–6121. 78

Example 23: GLAT

 Compared to Mask-Predict where the glancing is completely random, it is possible to design a curriculum: We can control the number of tokens being glanced based on the training progress.

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, "Glancing transformer for nonautoregressive neural machine translation," in ACL-IJCNLP, 2021, pp. 1993–2003.

Example 23: GLAT

Compared to Mask-Predict where the glancing is completely random, it is possible to design a curriculum: *We can control the number of tokens being glanced based on the training progress*.

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, "Glancing transformer for nonautoregressive neural machine translation," in ACL-IJCNLP, 2021, pp. 1993–2003.

80

•

Example 24: Task-level curriculum learning

🕫 Meta 🗧 Microsoft

Output Target Token AR training K=1 Linear & Softmax Task-level curriculum Decoder Block Add & Norm learning to shift the N× Feed Forward Encoder Block training strategy from AR Add & Norm Add & Norm to SAR gradually, finally Feed Forward **Enc-Dec Attention Partially NAR** N× K=2,4,8,16 Add & Norm Add & Norm training (n-gram) to NAR generation. Self Attention Causal-k Self-Attention Positional O Positional O ⊕ Encoding Word Embedding Word Embedding |N/k| kSource Token k Source Token Target Token K=N $P(y|x) = \prod P(y_{tk+j}|y_{< tk+1}, x; \theta)$ $t=0 \ j=1$

J. Liu, Y. Ren, X. Tan, C. Zhang, T. Qin, Z. Zhao, and T.-Y. Liu, "Task-level curriculum learning for non-autoregressive neural machine translation," in *IJCAI*, 2021, pp. 3861–3867.

Example 25: Multi-granularity Curriculum Learning

- Curriculum learning can also be performed on data with different translation granularities.
- Training data is divided into words, • phrases, and sentences. A progressive multi-granularity training strategy is used to train the model from easy to hard

	Source	Targets		
p		银行		
Vor	Jo bank	岸		
Ň		储库		
se	1 11	中空 结构		
ıra	structural	空心的 结构		
PI		镂空 结构		
nce	He is your good	他英文很好。		
lter	at English.	他非常擅长英语。		
Sen		他的英语水平很高。		

L. Ding, L. Wang, X. Liu, D. F. Wong, D. Tao, and Z. Tu, "Progressive multi-granularity training for nonautoregressive translation," in Findings of ACL-IJCNLP, 2021, pp. 2797–2803. 82

Improve NAR generation with Pre-training

 Like typical AR sequence generation, NAR models can also be benefitted by fine-tuning from a pretrained models, especially from "Encoder-only" pretraining such as BERT.

Y. Su, D. Cai, Y. Wang, D. Vandyke, S. Baker, P. Li, and N. Collier, "Non-autoregressive text generation with pre-trained language models," in EACL, 2021, pp. 234–243.

P. Li, L. Li, M. Zhang, M. Wu, and Q. Liu, "Universal conditional masked language pre-training for neural machine translation," ACL, 2022.

A principled goal

- The main challenge of NAR generation is *"failure of capturing the target side dependency"*.
- Overall instructions:

Methods	Overall instructions
Model architecture	Improve the model's capability of capturing target-side dependency
Objective function	Provide learning signal that resolves uncertainty
Training data	Reduce the target-side dependency in the training
Learning paradigm	Better paradigm to ease the difficulty of learning
Inference techniques	Techniques that improve the final performance

Length beam / Noisy Parallel Decoding

 First predict a target length L, and then construct a length beam [L-B, L+B] with beam size 2B+1

 Use NAR model (encoder one time, decode 2B+1 times) to generate sentences with these lengths

 For latent-variable based models, we can further sample more by sampling multiple latent codes, and then choose the best one with highest model scores.

AR model re-ranking

 After obtaining multiple candidates, we can use AR model to give a probability score to help select a better candidates

 Usually weighted combine the probability score from both AR and NAR for final reranking

Combine with n-gram LM

 Similar to the common practice in ASR, it is also useful to combine n-gram LM into NAR generation, while maintaining overall speed-up.

	Configuration	BLEU (Δ)	BP	$\mathcal{L}_1^{ ext{GPU}}$ (Sp	eed-up)	$\mathcal{L}_1^{ ext{CPU}}$ (Sp	peed-up)
	big (teacher)	21.07	0.920	345 ms	$1.0 \times$	923 ms	$1.0 \times$
AT	base	18.91	0.908	342 ms	$1.0 \times$	653 ms	$1.4 \times$
	base (12-1)	15.47	0.806	152 ms	$2.3 \times$	226 ms	$4.0 \times$
	<i>base</i> (12-1) + KD	18.76	0.887	145 ms	$2.4 \times$	254 ms	3.6 ×
	KD + CTC	16.93 (+0.00)	0.828	17.3 ms	19.9 ×	84 ms	$11.0 \times$
	KD + CTC + VAE	18.73 (+1.80)	0.862	16.4 ms	$21.0 \times$	83 ms	$11.1 \times$
NAT	w. BeamSearch20	19.80 (+2.87)	0.958	28.5 ms	$12.1 \times$	99 ms	$9.3 \times$
INAI	w. BeamSearch20 + 4-gram LM	21.41 (+4.48)	0.954	31.5 ms	$11.0 \times$	106 ms	$8.7 \times$
	w. <i>NPD5</i>	18.88 (+1.95)	0.866	34.9 ms	$9.9 \times$	313 ms	$2.9 \times$
	w. NPD5 + BeamSearch20 + 4-gram LM	21.84 (+4.91)	0.962	57.6 ms	$6.0 \times$	284 ms	$3.2 \times$

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade. *ACL 2021.*

A practical system of fully NAR model for machine translation

Methods	Distillation	Latent Variables	Latent Alignments	Glancing Targets
What it can do?	simplifying the training data	model any types of de- pendency in theory	handling token shifts in the output space	ease the difficulty of learning hard examples
What it cannot?	uncertainty exists in the teacher model	constrained by the mod- eling power of the used latent variables	unable to model non- monotonic dependency, e.g. reordering	training / testing phase mismatch
Potential issues	sub-optimal due to the teacher's capacity	difficult to train; poste- rior collapse	decoder inputs must be longer than targets	difficult to find the op- timal masking ratio

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade. ACL 2021.

88

Final System

 Combine the technique of KD with proposed model, we can finally close the performance gap between autoregressive models.

 In the meantime, the fully NAT model maintains over x17 speedup.

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade. *ACL 2021.*

Final System

ØMeta Microsoft

Speed vs Quality Trade-off

- Iterative NAT models (LevT and CMLM) require multiple iterations to achieve reliable performance with the sacrifice of latency
- Speed advantage of fully NAT models shrinks when parallelism is constrained

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade. *ACL 2021.*

90

Final System

How important all these techniques?

- The combination without KD has a clear performance drop compared to the one with KD
- CTC-based model obtains better accuracy through marginalizing all valid alignments
- The model with GLAT is more superior to the one with the RND training method, however it performs similarly with VAEs

KD	AXE	CTC	VAE	RND	GLAT	BLEU
						11.40
~						19.50
	l √					16.59
~	√					21.66
		\checkmark				18.18
~		~				26.51
		~	 ✓ 			23.58
\checkmark	✓		 ✓ 			22.19
\checkmark		\checkmark	✓			27.49
\checkmark	✓			✓		22.74
\checkmark	 ✓ 				\checkmark	24.67
\checkmark		\checkmark		 ✓ 		26.16
		\checkmark			\checkmark	21.81
\checkmark		\checkmark			\checkmark	27.20
\checkmark		~	√		✓	27.21

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade. *ACL 2021.*

Summary of Part II

- The main challenge of NAR generation is *"failure of capturing the target side dependency"*.
- Overall instructions:

Methods	Overall instructions
Model architecture	Improve the model's capability of capturing target-side dependency
Objective function	Provide learning signal that resolves uncertainty
Training data	Reduce the target-side dependency in the training
Learning paradigm	Better paradigm to ease the difficulty of learning
Inference techniques	Additional techniques that improve the final performance

Outline

- Part I: Introduction (Jiatao Gu)
- Part II: Methods (Jiatao Gu)
- Part III: Applications (Xu Tan)
- Part IV: Open Problems (Xu Tan)

https://github.com/NAR-tutorial/acl2022

Non-Autoregressive Sequence Generation

(Part III: Applications)

Xu Tan Microsoft Research Asia

Outline

- Overview of NAR generation tasks in NLP/Speech/CV
 - Target-target vs target-source dependency
- Key tasks
 - Neural machine translation
 - Text error correction
 - Speech to text recognition
 - Text to speech/Singing voice synthesis
 - Image generation
- Summary of NAR applications
 - Benefits of NAR for different tasks
 - Addressing target-target dependency (model multimodal distributions)
 - Addressing target-source dependency (learn source-target alignment)
 - Data difficulty vs model capacity
 - Streaming vs NAR, AR vs Iterative NAR

Target-target vs target-source dependency

• Tradeoff in dependency

- Target-target dependency: dependency among target tokens
- Target-source dependency: dependency on source tokens
- If target-target is stronger than target-source dependency → more information is needed from target tokens instead of source tokens → NAR is more difficult
- Connection to multi-modality
 - Multi-modality: P(x|y) is not single-modal, not one-one mapping
 - e.g., "Thank You" \rightarrow "Vielen Dank" or "Danke"
 - If target-source dependency dominates, then P(x|y) is more like single-modal, a source token will have one definite translation
 - If target-target dependency dominates, then P(x|y) will be like multi-modal, a source token will have multiple token translations

Modality	Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Text	Neural Machine Translation	Source language	urce language Target language		***
Generation	Text Summarization	Long text	Short Summarization	>	***
	Text Error Correction	Error Text	Correct Text	>	***
	Text Style Transfer	Source Text	Target text	>	***
	Dialogue Generation	Dialogue	Response	<	****
	Speech Recognition	Speech	Text	\geq ?	***
Speech	Text to Speech	Text	Speech	>	***
Generation	Singing Voice Synthesis	Score	Singing Voice	>>	***
	Voice Conversion	e Conversion Source Voice		»	**
	Speech Enhancement	Noisy Speech	Clean Speech	»	*
Image	Pixel Generation	Class ID	Image Pixel	-	*
Generation	Discrete Token Generation		Image Token	-	**

The values in the last two columns are just for reference

Target-source dependency

Dependency Type	Task	Alignment
Target has correspondence with source	Speech Enhancement	Alignment inherently
	Voice Conversion	
	Text to Speech	Need alignment
	Singing Voice Synthesis	Music score alignment
	Speech Recognition	CTC Alignment
Target is a minor change of source	Text Error Correction	Locate the minor changes
	Text Style Transfer	Content unchange and style change
Target is a translation of source	Machine Translation	Alignment through attention
Target is implicitly correlated to source	Dialogue Generation	Absorb the high-level abstraction
	Image Generation	Category information

Target-target dependency

Dependency Type	Task	Description				
Text	Machine Translation					
	Text Summarization	Discrete takens in languages are contextualized, explained				
	Text Error Correction	mutually.				
	Text Style Transfer	Language tokens have strong mutual dependency				
	Dialogue Generation					
	Speech Recognition					
Speech and Image	Text to Speech	For continuous signal like speech/sound/image, they				
	Singing Voice Synthesis	depends on the concept, like speech frames depend on a word image pixel depend on a class				
	Image Generation	Maybe weaker mutual dependency				

Outline

- Overview of NAR generation tasks in NLP/Speech/CV
 - Target-target vs target-source dependency
- Key tasks
 - Neural machine translation
 - Text error correction
 - Speech to text recognition
 - Text to speech/Singing voice synthesis
 - Image generation
- Summary of NAR applications
 - Benefits of NAR for different tasks
 - Addressing target-target dependency (model multimodal distributions)
 - Addressing target-source dependency (learn source-target alignment)
 - Data difficulty vs model capacity
 - Streaming vs NAR, AR vs Iterative NAR

Modality	Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Text	Neural Machine Translation	Source language	Target language	≈?	***
Generation	Text Summarization	Long text	Short Summarization	>	***
	Text Error Correction	Error Text	Correct Text	>	***
	Text Style Transfer	Source Text	Target text	>	***
	Dialogue Generation	Dialogue	Response	<	****
	Speech Recognition	Speech	Text	≥?	***
Speech	Text to Speech	Text	Speech	>	***
Generation	Singing Voice Synthesis	Score	Singing Voice	>>	***
	Voice Conversion	Source Voice	Target Voice	»	**
	Speech Enhancement	Noisy Speech	Clean Speech	»	*
Image	Pixel Generation	Class ID	Image Pixel	-	*
Generation	Discrete Token Generation		Image Token	-	**

The values in the last two columns are just for reference

- Text errors: writing assistant, search engine, speech recognition, optical character recognition, etc.
- Input: text sequence with errors; Output: corrected text sequence
- Naïve NAR solution usually fails
- Challenges
 - Error detection and error correction, to avoid under/over-correction
 - Few modifications in text error correction (e.g., 10% WER)

Design with inductive bias, instead of black-box end-to-end learning in NAR!

- How to detect errors and correct errors?
- Implicit way
 - Target-source attention
 - CTC (connectionist temporal classification): duplicate source tokens multiple times, and use CTC loss $P(y|x) = \sum_{z \in \varphi(y)} P(z|x)$
- Explicit way
 - Detect the exact error patterns of insertion/deletion/substitution
 - Or use duration as an approximation: 0 for deletion, 1 for substitution or nochange, 2 or more for insertion
 - Expand the source tokens to the length of target tokens according to duration, and generate correct tokens

- Implicit error detection and correction
 - Target-source attention (NAR)
 - Determine the whole length of target sequence, but no need the exact alignment
 - Use QKV attention:
 - Query: blank token/ position embedding according to the predicted length
 - Key/Value: source hidden
 - CTC (connectionist temporal classification) $P(y|x) = \sum_{z \in \varphi(y)} P(z|x)$
 - e.g., I have a hat \rightarrow I have a cat
 - Input of the CTC model: III have have have a a a hat hat hat (duplicate 3 times)
 - Output of the CTC model: II ØØ have Ø a a Ø cat Ø Ø
 - CTC path merge:
 I have a cat

- Explicit error detection and correction
 - Exact insertion/deletion/substitution
 - Detect each source token as insertion/deletion/substitution
 - Still need to determine the length of insertion for parallel generation
 - Or directly use duration as an approximation: 0 for deletion, 1 for substitution or nochange, 2 or more for insertion

• However, how to get the label for insertion/deletion/substitution or duration?

- How to get the label? Through target-source alignment!
 - Naïve hard match, not optimal
 - Alignment with dynamic programming, based on edit distance

Leng Y, Tan X, Zhu L, et al. FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition[J]. NeurIPS 2021 Meta Microsoft

- How to use the alignment label?
 - Provide duration label or provide error detection label

- In training correction model, usually data augmentation/pre-training is used
 - Why? Few modifications in text error correction (e.g., 10% WER), few training signal can be leveraged
- How to augment data?
 - Manually augment: insertion/deletion/substitution
 - The probability distribution of deletion, insertion and substitution is set to the error distribution
 - Model based augment
 - BERT model with masked language modeling

- Text error correction on speech recognition (FastCorrect, NeurIPS 2021)
 - ASR model is a Conformer model from ESPnet, on Chinese AISHELL-1 dataset

AISHELL-1	Test Set		Dev Set		Latency (ms/sent) on Test Set		
	WER	WERR	WER	WERR	GPU	CPU*4	CPU
No correction AR model	4.83 4.08	- 15.53	4.46 3.80	- 14.80	- 149.5 (1×)	- 248.9 (1×)	531.3 (1×)
LevT (MIter=1) [9] LevT (MIter=3) [9] FELIX [25]	4.73 4.74 4.63	2.07 1.86 4.14	4.37 4.38 4.26	2.02 1.79 4.48	54.0 (2.8×) 60.5 (2.5×) 23.8 (6.3×)	82.7 (3.0×) 83.9 (3.0×) 41.7 (6.0×)	158.1 (3.4×) 161.6 (3.3×) 85.7 (6.2×)
FastCorrect	4.16	13.87	3.89	13.3	21.2 (7.1×)	40.8 (6.1×)	82.3 (6.5×)

- Text error correction on speech recognition (FastCorrect, NeurIPS 2021)
 - Compare with deep encoder and shallow decoder (no inductive bias)

	AISHELL-1					
Model	WER	Latency (ms/sent)				
	%	GPU	CPU			
No Correction	4.83	-	-			
AR 6-6	4.08	149.5 (1×)	531.3 (1×)			
AR 8-4	4.14	120.5 (1.2×)	427.6 (1.2×)			
AR 10-2	4.23	84.0 (1.8×)	317.6 (1.5×)			
AR 11-1	4.30	66.5 (2.2×)	281.0 (1.7×)			
FastCorrect	4.16	21.2 (7.1×)	82.3 (6.5×)			

• Is implicit detection or explicit detection good enough?

- Implicit: does not provide clear signal about which tokens are incorrect
- Explicit: suffers from detection accuracy (insertion/deletion/substitution)
- A better way: a soft detection mechanism: neither too implicit nor too explicit

Text error correction

- Extensions of error correction on ASR/OCR or other text generation models
 - N-best output
 - Voting effect: tokens from multiple sentences can verify the correctness with each other
 - e.g., "I have a cat", "I have a hat", "I have a bat"
 - Source speech/image information
 - Two encoders, one for speech/image, the other for error text
 - Use cross-attention to serve as additional input
- Action based correction
 - First predict the correction action: keep, delete, generate
 - Then generate the corresponding correction

Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Neural Machine Translation	Source language	Target language	≈?	***
Text Summarization	Long text	Short Summarization	>	***
Text Error Correction	Error Text	Correct Text	>	***
Text Style Transfer	Source Text	Target text	>	***
Dialogue Generation	Dialogue	Response	<	****
Speech Recognition	Speech	Text	≥?	***
Text to Speech	Text	Speech	>	***
Singing Voice Synthesis	Score	Singing Voice	>>	***
Voice Conversion	Source Voice	Target Voice	»	**
Speech Enhancement	Noisy Speech	Clean Speech	>>	*
Pixel Generation	Class ID	Image Pixel	-	*
Discrete Token Generation		Image Token	-	**
	TaskNeural Machine TranslationText SummarizationText SummarizationText SummarizationText Error CorrectionText Style TransferDialogue GenerationDialogue GenerationSpeech RecognitionText to SpeechSinging Voice SynthesisVoice ConversionSpeech EnhancementPixel GenerationDiscrete Token Generation	TaskSourceNeural Machine TranslationSource languageText SummarizationLong textText SummarizationError TextText Error CorrectionSource TextText Style TransferSource TextDialogue GenerationDialogueSpeech RecognitionSpeechText to SpeechTextSinging Voice SynthesisScoreVoice ConversionSource VoiceSpeech EnhancementNoisy SpeechPixel GenerationClass IDDiscrete Token GenerationHert	TaskSourceTargetNeural Machine TranslationSource languageTarget languageText SummarizationLong textShort SummarizationText Error CorrectionError TextCorrect TextText Style TransferSource TextTarget textDialogue GenerationDialogueResponseSpeech RecognitionSpeechSpeechSinging Voice SynthesisScoreSinging VoiceVoice ConversionSource VoiceSinging VoiceSpeech EnhancementNoisy SpeechClean SpeechPixel GenerationClass IDImage PixelDiscrete Token GenerationMate Mate Mate Mate Mate Mate Mate Mate	TaskSourceTargetTarget-Source vs Target-TargetNeural Machine TranslationSource language≈ ?Text SummarizationLong textShort Summarization>Text Error CorrectionError TextCorrect Text>Text Style TransferSource TextTarget text>Dialogue GenerationDialogueResponse<

The values in the last two columns are just for reference

- Input: speech (waveform/spectrogram) sequence
- Output: text (word/BPE/character/phoneme) sequence
- Target dependency comparison with NMT
 - NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next should be B, otherwise if the first is C, the next should be D.
 - ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next should be B. If the first is C, the next should be still B.

Target dependency in ASR is weaker than that in NMT

• CTC (connectionist temporal classification)

$$P(y|x) = \sum_{z \in \varphi(y)} P(z|x)$$

 $\varphi(y)$ is called CTC path

- e.g., z: HHEØLØLOO, or ØHHEELØLO \rightarrow y: HELLO
- CTC assumes no dependency among the target tokens, but can still works well
- But modeling target dependency can still bring improvement

- Refine the CTC output with bidirectional dependency
 - Token-level (after CTC merge):
 - Mask-CTC: CMLM decoder refine the CTC output
 - Improved Mask-CTC: with length adjustment
 - Insertion Transformer:
 - KERMIT
 - Frame-level (before CTC merge)
 - Imputer:
 - Align-Refine:
 - Align-Denoise
 - Intermediate CTC
 - Self-conditioned CTC: DSLSP

Model	#iter	Processing unit	СТС
A-CMLM [17]	3	token	
Imputer [18]	8	frame	\checkmark
LASO [20]	1	token	
Spike-Triggered [22]	1	token	\checkmark
Mask-CTC [19]	10	token	\checkmark
Improved Mask-CTC [31]	5	token	\checkmark
Align-Refine [23]	5	frame	\checkmark
Align-Denoise [33]	1	frame	\checkmark
Insertion Transformer [21]	$\simeq \log_2(L)$	token	
KERMIT [21]	$\simeq \log_2(L)$	token	\checkmark
Intermediate CTC [35]	1	frame	\checkmark
Self-conditioned CTC [36]	1	frame	\checkmark
CIF-NA [39]	1	token	\checkmark

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.

			Inference speed		LS-100 (WER)			TED2 (WER)		CSJ-APS (CER)			
Model		#iter	RTF	Speedup	de clean	ev other	te clean	est other	dev	test	eval1	eval2	eval3
	CTC/attention	L	0.341	$1.00 \times$	6.8	18.8	7.4	19.0	11.6	8.7	5.4	4.0	9.8
	+ beam-search	> L	3.419	0.10 imes	6.3	18.2	6.8	18.5	10.4	8.4	5.1	3.8	9.0
AK	Transducer	L	0.069	$4.94 \times$	7.3	19.9	7.6	19.9	9.6	9.2	6.3	4.5	10.6
	+ beam-search	>L	0.234	1.46×	6.4	18.8	6.8	18.9	8.6	8.2	5.2	4.1	10.0
	CTC	1	0.059	5.78×	7.4	20.5	7.8	20.8	8.9	8.6	5.4	4.0	9.6
	Mask-CTC	10	0.063	$5.41 \times$	7.2	20.3	7.5	20.6	8.9	8.5	5.6	4.0	9.6
	Improved Mask-CTC	5	0.072	$4.74 \times$	7.0	19.8	7.3	20.2	8.8	8.3	5.5	4.0	9.5
	Align-Denoise	1	0.073	$4.67 \times$	8.0	22.3	8.4	22.5	9.0	8.7	5.4	3.7	9.1
NAR	Intermediate CTC	1	0.059	5.78 imes	6.9	19.7	7.1	20.2	8.5	8.3	5.6	4.1	9.8
	Self-conditioned CTC	1	0.059	5.78 imes	6.6	19.4	6.9	19.7	8.7	8.0	5.3	3.7	9.1
	KERMIT	$\simeq \log_2(L)$	0.361	$1.06 \times$	7.1	19.7	7.4	20.2	9.1	8.2	5.4	3.7	9.5
	Insertion Transformer	$\simeq \log_2(L)$	0.083	$4.11 \times$	16.0	27.3	16.2	27.4	_	_	_	_	_
	$CIF-NA^{\dagger}$	1	0.073	4.67×	15.4	34.0	15.7	34.6	—	—	_	_	_

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021. Microsoft

Modality	Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Text	Neural Machine Translation	Source language	Target language	≈?	***
Generation	Text Summarization	Long text	Short Summarization	>	***
	Text Error Correction	Error Text	Correct Text	>	***
	Text Style Transfer	Source Text	Target text	>	***
	Dialogue Generation	Dialogue	Response	<	****
	Speech Recognition	Speech	Text	\geq ?	***
Speech	Text to Speech	Text	Speech	>	***
Generation	Singing Voice Synthesis	Score	Singing Voice	>>	***
	Voice Conversion	Source Voice	Target Voice	»	**
	Speech Enhancement	Noisy Speech	Clean Speech	»	*
Image	Pixel Generation	Class ID	Image Pixel	-	*
Generation	Discrete Token Generation		Image Token	-	**

The values in the last two columns are just for reference

- Input: text (character/phoneme) sequence
- Output: speech (waveform/spectrogram) sequence

• We will mainly focus on acoustic model: phoneme to mel-spectrogram mapping, and vocoder: mel-spectrogram to waveform mapping

- Target dependency comparison with NMT and ASR
 - NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next should be B, otherwise if the first is C, the next should be D.
 - ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next should be B. If the first is C, the next should be still B.
 - Besides, NMT and ASR rely on target dependency for language modeling
 - TTS
 - Speech frames largely depend on the source word, waveform samples largely depend on the condition spectrogram
 - Dependency among speech frames and waveform samples? Yes, indeed, but...

- Target dependency comparison with NMT and ASR
 - Discrete tokens in languages is contextualized, explained mutually. Language tokens have strong mutual dependency
 - But for continuous signal like speech/sound/image, they depends on the concept, like speech frames depend on a word, image pixel depend on a class
 - Maybe weak mutual dependency among signal itself, that is why parallel generation model is so popular in image or speech generation.
 - Another point
 - Waveform samples and image pixels are so long in sequence, inference speed is extremely slow for autoregressive generation. Strong demand for NAR generation!
 - Some specific reasons in speech/spectrogram generation:
 - Usually, speech frame is obtained via STFT with window/hop size (50ms/12.5ms), two adjacent frames have 3/4 overlapping. Autoregressive generation will lead to copy, unstable to model.

- Target dependency comparison with NMT and ASR
 - NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next should be B, otherwise if the first is C, the next should be D.
 - ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next should be B. If the first is C, the next should be still B.
 - Besides, NMT and ASR rely on target dependency for language modeling
 - TTS

🕫 Meta 🗧 Microsoft

- Speech frames largely depend on the source word, waveform samples largely depend on the condition spectrogram
- Dependency among speech frames and waveform samples? Yes, indeed, but...

Based on above analysis, TTS has much weaker target dependency than NMT, and slightly weaker than ASR

Text to Speech: NAR for speedup

- Compared with autoregressive mel-spectrogram/waveform generation
 - Sequence is very long, e.g., 1s speech, 500 mel, 24000 waveform points
 - Slow inference speed

Text to Speech: NAR for robustness

• AR model (Tacotron 2, DeepVoice 3, Transformer TTS) not robust: words skipping and repeating;

You can call me directly at 4257037344 or my cell 4254447474 or send me a meeting request with all the appropriate information.

 Encoder-decoder attention: Attention between mel-spectrogram and phoneme: monotonic and diagonal

And it is worth mention in passing that, as an example of fine typography

Text to Speech: NAR for controllability

- AR model automatically determines the length of speech
 - Lack of controllability: hard to control the voice speed/prosody in AR generation

was executed on a gibbet in front of his victim's house.

after dinner | he went into hiding for a day or two

Text to Speech: NAR overview

• Overview of NAR models in TTS

• N is sequence length, T is iteration step

Modeling Paradigm	TTS Model	Training	Inference
AR (RNN) AR (CNN/Self-Att) NAR (CNN/Self-Att) NAR (GAN/VAE) Flow (AR) Flow (Bipartite)	Tacotron 1/2, SampleRNN, LPCNet DeepVoice 3, TransformerTTS, WaveNet FastSpeech 1/2, ParaNet MelGAN, HiFi-GAN, FastSpeech 2s, EATS Par. WaveNet, ClariNet, Flowtron WaveGlow, FloWaveNet, Glow-TTS	$egin{array}{c} {\cal O}(N) \ {\cal O}(1) \ {\cal O}(T) \end{array}$	$egin{aligned} \mathcal{O}(N) \ \mathcal{O}(N) \ \mathcal{O}(1) \ \mathcal{O}(1) \ \mathcal{O}(1) \ \mathcal{O}(1) \ \mathcal{O}(T) \end{aligned}$
Diffusion	DiffWave, WaveGrad, Grad-TTS, PriorGrad	$\mathcal{O}(T)$	$\mathcal{O}(T)$

Text to Speech: FastSpeech

- Design of FastSpeech
 - Generate mel-spectrogram in parallel (for speedup, 270x)
 - Remove the text-speech attention mechanism (for robustness, no word skipping/repeating)
 - Feed-forward transformer with length regulator (for controllability, speed control)

https://speechresearch.github.io/fastspeech/

Text to Speech: FastSpeech 2

• FastSpeech 2

- Improve FastSpeech (one-to-many mapping)
- Use variance adaptor to predict duration, pitch, energy, etc
- Simplify training pipeline of FastSpeech (KD)
- FastSpeech 2s: a fully end-to-end parallel text to wave model

p(x|y) multimodal distribution

Text to Speech: Multi-modal

How to model multi-modal distribution p(x|y)

- Simplify the multimodal distribution p(x|y)
 - Simplify target: Data distillation: lossy, Data transformation: Short Time Fourier Transformation (STFT), DCT, Wavelet
 - More input information: Pitch, duration, energy, speaker ID, prosody tag, etc..
 - Better alignment: duration/alignment modeling
- Advanced modeling for multimodal distribution
 - L1: Laplace distribution, L2: Gaussian distribution
 - Mixture of Gaussian/Laplace/Logistic: multimodal distribution
 - High-order statistics loss: high-order moment, SSIM
 - Model-based loss (any distribution): classifier, discriminator in GAN
 - Advanced generative models (AR/Flow/VAE/Diffusion/GAN, etc)

Text to Speech: Better alignment

• Duration modeling

- Statistic parametric speech synthesis \rightarrow AR model \rightarrow NAR
- Duration → attention, no duration → duration prediction (technique renaissance!)

Text to Speech: Advanced generative models

• Flow/VAE/Diffusion/GAN

- A comparison among different generative models for TTS
 - Simplicity in math formulation and optimization
 - Support parallel generation
 - Support latent manipulation
 - Support likelihood estimation

Generative Model	AR	VAE	Flow/AR	Flow/	Bipartite	Diffusion	GAN
Simple	Y	Ν	Ν		N	N	Ν
Parallel	Ν	Y	Y		Y	Y	Y
Latent Manipulate	Ν	Y	Y		Y	Y	Y*
Likelihood Estimate	Y	Y	Y		Y	Y	Ν

GAN is weak in latent manipulation, since the condition in TTS is so strong, P(y|x) is not that much multi-modal compared to image synthesis, and some GAN based model do not add random noise

Text to Speech: Flow

- Map between data distribution p(x) and standard (normalizing) prior distribution p(z) Evaluation $z = f^{-1}(x)$ Synthesis x = f(z)
- Category of normalizing flow
 - AR (autoregressive): AF (autoregressive flow) and IAF (inverse autoregressive flow)
 - Bipartite: RealNVP and Glow

Flow		Evaluation $z = f^{-1}(x)$	Synthesis $x = f(z)$
AD	AF [261]	$ z_t = x_t \cdot \sigma_t(x_{< t}; \theta) + \mu_t(x_{< t}; \theta) $	$x_t = \frac{z_t - u_t(x_{\le t};\theta)}{\sigma_t(x_{\le t};\theta)}$
AR –	IAF [169]	$z_t = \frac{x_t - \mu_t(z_{\le t}; \theta)}{\sigma_t(z_{\le t}; \theta)}$	$ x_t = z_t \cdot \sigma_t(z_{< t}; \theta) + \mu_t(z_{< t}; \theta) $
D	RealNVP [66]	$ z_a = x_a,$	$ x_a = z_a,$
Bipartite	Glow [167]	$z_b = x_b \cdot \sigma_b(x_a; \theta) + \mu_b(x_a; \theta)$	$x_b = \frac{z_b - \mu_b(x_a;\theta)}{\sigma_b(x_a;\theta)}$

Text to Speech: Flow (vocoder)

• Parallel WaveNet (AR)

- Knowledge distillation: Student (IAF), Teacher (AF)
- Combine the best of both worlds
 - Parallel inference of IAF student
 - Parallel training of AF teacher

• Other works

Microsoft

∞ Meta

• ClariNet

Text to Speech: Flow (vocoder)

- WaveGlow (Bipartite)
 - Flow based transformation

Text to Speech: Flow (acoustic model)

- Glow-TTS
 - Log likelihood $\log P_X(x|c) = \log P_Z(z|c) + \log \left| \det \frac{\partial f_{dec}^{-1}(x)}{\partial x} \right|$
 - Prior is learnt from phoneme text

$$\log P_Z(z|c;\theta,A) = \sum_{j=1}^{T_{mel}} \log \mathcal{N}(z_j;\mu_{A(j)},\sigma_{A(j)})$$

• Alignment A is obtained by monotonic alignment search

Text to Speech: GAN

• Adversarial loss

$$\mathcal{L}_{Adv}(D;G) = \mathbb{E}_{(x,s)} \left[(D(x) - 1)^2 + (D(G(s)))^2 \right]$$

$$\mathcal{L}_{Adv}(G;D) = \mathbb{E}_s \left[(D(G(s)) - 1)^2 \right]$$

• Category of GAN based vocoders

GAN	GAN Generator		Loss
WaveGAN [68]	DCGAN [287]	/	WGAN-GP [97]
GAN-TTS [23]	/	Random Window D	Hinge-Loss GAN [198]
MelGAN [178]	/	Multi-Scale D	LS-GAN [231] Feature Matching Loss [182]
Par.WaveGAN [402]	WaveNet [254]	/	LS-GAN, Multi-STFT Loss
HiFi-GAN [174]	Multi-Receptive Field Fusion	Multi-Period D, Multi-Scale D	LS-GAN, STFT Loss, Feature Matching Loss
VocGAN [408]	Multi-Scale G	Hierarchical D	LS-GAN, Multi-STFT Loss, Feature Matching Loss
GED [96]	/	Random Window D	Hinge-Loss GAN, Repulsive loss

Text to Speech: GAN (vocoder)

• HiFiGAN

- Multi-Scale Discriminator (MSD)
- Multi-Period Discriminator (MPD)

🕫 Meta 📕 Microsoft

Text to Speech: Diffusion

- Diffusion probabilistic model
 - Forward (diffusion) process:
 - Reverse (denoising) process

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}), \ q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$
$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \ p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Text to Speech: Diffusion

• Loss derived from ELBO:

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\mathbf{x}_{t}, t \right) \right\|^{2} \right]$$

• Training and inference process

Algorithm 1 Training	Algorithm 2 Sampling
for $i = 1, 2, \cdots, N_{\text{iter}}$ do	Sample $x_T \sim p_{\text{latent}} = \mathcal{N}(0, I)$
Sample $x_0 \sim q_{\text{data}}, \epsilon \sim \mathcal{N}(0, I)$, and	for $t=T,T-1,\cdots,1$ do
$t \sim \text{Uniform}(\{1, \cdots, T\})$	Compute $\mu_{\theta}(x_t, t)$ and $\sigma_{\theta}(x_t, t)$ using Eq. (5)
Take gradient step on	Sample $x_{t-1} \sim p_{\theta}(x_{t-1} x_t) =$
$\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \ _2^2$	$\mathcal{N}(x_{t-1};\mu_{ heta}(x_t,t),\sigma_{ heta}(x_t,t)^2I)$
according to Eq. (7)	end for
end for	return x ₀

Text to Speech: Diffusion

- Diffusion model for vocoder: DiffWave, WaveGrad
- Diffusion model for acoustic model: Diff-TTS, Grad-TTS
- Improving diffusion model for TTS
 - PriorGrad, SpecGrad, DiffGAN-TTS, WaveGrad 2, etc
- With sufficient diffusion steps, the quality is good enough, but latency is high
- How to reduce inference cost while maintaining the quality is challenging, and has a long way to go

Text to Speech: NAR with human-level quality

- NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)
- Leverage VAE to compress high-dimensional waveform x into frame-level representations z~q(z|x), and is used to reconstruct waveform x~p(x|z)
- To enable text to waveform synthesis, z is predicted from y, $z^{p}(z|y)$
- However, the posterior $z^q(z|x)$ is more complicated than the prior $z^p(z|y)$.

Text to Speech: NAR with human-level quality

- Solutions in NaturalSpeech
 - Phoneme encoder with large-scale phoneme pre-training
 - Differentiable durator
 - Bidirectional prior/posterior
 - Memory based VAE

(d) Memory mechanism in VAE.

Text to Speech: NAR with human-level quality

- Evaluations of NaturalSpeech
 - MOS and CMOS on par with recordings, p-value >> 0.05

Human Recordings	NaturalSpeech	Wilcoxon p-value 0.7145		
4.58 ± 0.13	4.56 ± 0.13			
Human Recordings	NaturalSpeech	Wilcoxon p-value		
0	-0.01	0.6902		

Achieving human-level quality on LJSpeech dataset for the first time!

Modality	Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Text	Neural Machine Translation	Source language	Target language	≈?	****
Generation	Text Summarization	Long text	Short Summarization	>	***
	Text Error Correction	Error Text	Correct Text	>	***
	Text Style Transfer	Source Text	Target text	>	***
	Dialogue Generation	Dialogue	Response	<	****
	Speech Recognition	Speech	Text	≥?	***
Speech	Text to Speech	Text	Speech	>	***
Generation	Singing Voice Synthesis	Score	Singing Voice	>>	***
	Voice Conversion	Source Voice	Target Voice	»	**
	Speech Enhancement	Noisy Speech	Clean Speech	»	*
Image	Pixel Generation	Class ID	Image Pixel	-	*
Generation	Discrete Token Generation		Image Token	-	**

The values in the last two columns are just for reference

Singing voice synthesis

• Input: lyric/score (phoneme/pitch/duration); output: singing voice

- Target-source dependency is even stronger than target-target dependency when compared with text to speech synthesis
 - Duration and pitch in score can decide the duration/pitch in singing voice in a large extent
 - NAR is preferred
- Generative models are similar to that used in speech synthesis
- Only slight difference in alignment modeling
 - Given a rough duration and pitch in music score, predict more accurate duration and pitch in the singing voice
 - Since human cannot always sing according to music score, both in duration and pitch

Singing voice synthesis

- But singing has its distinctive characteristics other than speaking voice
 - Pitch/duration range is wider than speaking

- Data space is larger (#phoneme * #pitch * #duration) than speech
- Many singing techniques: trill, glide, opera singing, etc
- High expressiveness with high fidelity (e.g., 48kHz)
- e.g., HiFiSinger, a NAR singing model for high-fidelity 48kHz voice

Method	MOS
Recording (48kHz) Recording (24kHz)	$4.03 \pm 0.06 \\ 3.70 \pm 0.08$
XiaoiceSing (48kHz)	2.93 ± 0.06
Baseline (24kHz) Baseline (48kHz)	$3.32 \pm 0.09 \\ 3.44 \pm 0.08$
HiFiSinger (24kHz) HiFiSinger (48kHz)	3.47 ± 0.06 3.76 ± 0.06

Modality	Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Text Generation	Neural Machine Translation	Source language	Target language	≈?	* * * *
	Text Summarization	Long text	Short Summarization	>	***
	Text Error Correction	Error Text	Correct Text	>	***
	Text Style Transfer	Source Text	Target text	>	***
	Dialogue Generation	Dialogue	Response	<	****
	Speech Recognition	Speech	Text	≥?	***
Speech Generation	Text to Speech	Text	Speech	>	***
	Singing Voice Synthesis	Score	Singing Voice	>>	***
	Voice Conversion	Source Voice	Target Voice	»	**
	Speech Enhancement	Noisy Speech	Clean Speech	»	*
Image Generation	Pixel Generation	Class ID	Image Pixel	-	*
	Discrete Token Generation		Image Token	-	**

The values in the last two columns are just for reference

- Traditional image generation is inherently non-autoregressive based on generative models, like GAN, VAE, Flow and Diffusion model
 - GAN suffers from training instability and mode collapse
 - VAE suffers from blurriness
 - Flow and diffusion model require multiple iterative steps
 - Importantly, high-resolution image generation is costly for these methods

- A recent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)
 - Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with encoder
 - Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens autoregressively
 - Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete tokens

- A recent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)
 - Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with encoder
 - Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens autoregressively
 - Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete tokens

- Advantages and disadvantages
 - Advantages: first learn composition then render the details, very reasonable
 - Disadvantages
 - AR generation for discrete tokens, should have no order bias like in language
 - Slow in long sequence

Use NAR for discrete token generation!

- Input: any conditional information, e.g., class tag
- Output: discrete tokens of image
- Target dependency comparison with NLP/Speech tasks
 - Language has more target dependency, since contextual symbol
 - Speech has correspondence with source text, target dependency is weak
 - Image tokens seem to be similar to language, but more similar to speech

NAR image token generation weaker target dependency than NLP, maybe stronger than text to speech

Image Generation——MaskGIT

Meta Microsoft

• Use BERT-like mask-predict mechanism to iterative predict discrete tokens

Image Generation——VQ-Diffusion

• Use diffusion model with a mask-and-replace diffusion strategy to model the discrete tokens in parallel

Modality	Task	Source	Target	Target-Source vs Target-Target	Difficulty of NAR
Text Generation	Neural Machine Translation	Source language	Target language	≈?	* * * *
	Text Summarization	Long text	Short Summarization	>	***
	Text Error Correction	Error Text	Correct Text	>	***
	Text Style Transfer	Source Text	Target text	>	***
	Dialogue Generation	Dialogue	Response	<	****
	Speech Recognition	Speech	Text	≥?	***
Speech Generation	Text to Speech	Text	Speech	>	***
	Singing Voice Synthesis	Score	Singing Voice	>>	***
	Voice Conversion	Source Voice	Target Voice	»	**
	Speech Enhancement	Noisy Speech	Clean Speech	»	*
Image Generation	Pixel Generation	Class ID	Image Pixel	-	*
	Discrete Token Generation		Image Token	-	**

The values in the last two columns are just for reference

Outline

- Overview of NAR generation tasks in NLP/Speech/CV
 - Target-target vs target-source dependency
- Key tasks
 - Neural machine translation
 - Text error correction
 - Speech to text recognition
 - Text to speech/Singing voice synthesis
 - Image generation
- Summary of NAR applications
 - Benefits of NAR for different tasks
 - Addressing target-target dependency (model multimodal distributions)
 - Addressing target-source dependency (learn source-target alignment)
 - Data difficulty vs model capacity
 - Streaming vs NAR, AR vs Iterative NAR

Benefits of NAR: Inference speedup

- Ideal speedup for one pass generation
 - Text sequence: 10~100
 - Speech sequence: spectrogram/500, waveform/80K
 - Image sequence: token/256, pixel/65536
- Iterative based method
 - N/iter, speedup achieved when iter < N
 - For example, in TTS, for a speech/spectrogram sequence with 500 frames, a diffusion model with 1000 steps (e.g., Grad-TTS), then 500/1000 no speedup!
- Inference speedup does not necessarily mean low computation/memory
 - Computation/memory should be similar as AR model
 - NAR leverages parallel computation (e.g., GPU) for speedup

Benefits of NAR: Beyond inference speedup

- Avoid error propagation
 - AR has exposure bias and error propagation, later tokens will be affected by the accumulated errors in previous tokens
 - NAR has no such exposure bias and propagation
- Avoid order bias
 - Image has no left-to-right or right-to-left inductive bias
- Avoid label bias
- Avoid attention collapse
 - AR usually leverages encoder-decoder attention to extract source information
 - However, enc-dec attention is originally designed for text, may not be suitable for other modalities, such as in textto-speech, attention collapse and word skipping/repeating/error
- Improve controllability
 - AR generates token one-by-one, cannot well control the length or other factors
 - NAR can well control length, and generative models like VAE/Flow/GAN/Diffusion support latent manipulation!

AR is not the only way for generative modeling

Embrace Flow/VAE/Diffusion/GAN and other generative models in various tasks!

- Addressing target-source dependency to simplify mutimodal in p(x|y)
 - Learn better target-source alignment
- Addressing target-target dependency to better model multimodal
 - With advanced generative models (Flow/VAE/Diffusion/GAN, etc)

- Learn source-target alignment or provide more information to reduce multimodality in $p(\boldsymbol{x} \,|\, \boldsymbol{y})$

	Alignment Method	Task		
	Attention	Machine translation		
Meta Mi		Text summarization	Alignment is vague, not	
		Text style transfer	monotonic, and implicit	
		Dialogue generation		
	СТС	Text error correction		
		Speech recognition	Alignment is monotonic	
		Machine translation		
	Duration	Text to speech/Singing voice synthesis	Alignment is monotonic	
		Text error correction	and deterministic	
	No	Voice conversion/Speech enhancement	Already aligned well	
	N/A	Image pixel/token generation	No fine-grained condition	

161

- Learn source-target alignment or provide more information to reduce multimodality in p(x|y)
 - Alignment methods: attention, CTC, duration
 - Providing more information
 - e.g., the detailed class tag of an image, a specific class of dog, instead of simply a dog
 - e.g. language ID, speaker ID, more variance information (pitch, prosody) in speech
 - e.g., more context information in text, such as long sequence processing or document translation

- Addressing target-target dependency with advanced generative models
 - Flow/VAE/Diffusion/GAN can be well adopted in image/speech generation
 - More works are trying to apply these generative model in text generation
 - Iterative refinement (e.g., masked predict) is similar to diffusion model (VQ-Diffusion)
 - CV/Speech inspire NLP
 - There is a trend to discretize high-resolution continuous data (e.g., image, waveform) into low-resolution discrete tokens (VQ-VAE or Wav2vec)
 - NLP inspire CV/Speech

Data difficulty vs model capacity

- Tradeoff between the data difficulty (the degree of multimodality in p(x|y)) and the model capacity (representation power or model size)
 - Sometimes increase the model capacity can handle the multimodality to some extent
 - Extremely case: one model to learn them all!
 - But in some cases, data difficulty cannot be well addressed by simply increasing model capacity
 - e.g, NAR in NMT, need a teacher model to distill the data to reduce the data difficulty

Streaming vs NAR, AR vs iterative NAR

- Streaming vs NAR: Streaming is a scenario that a model processes in real-time when an input is coming, but not wait for the whole sequence
 - Streaming ASR, NMT in online scenario
 - In this case, two aspects:
 - The advantage of NAR is reduced, since we can process an input chunk very fast even using AR generation
 - The difficulty of NAR is reduced, since we can generate the current chunk in parallel, conditioned on the output of previous chunk
- AR vs iterative NAR
 - AR can be regarded as an extremely case of NAR
 - So all is about tradeoff between accuracy and efficiency

Outline

- Part I: Introduction (Jiatao Gu)
- Part II: Methods (Jiatao Gu)
- Part III: Applications (Xu Tan)
- Part IV: Open Problems (Xu Tan)

Open problems and future directions

- How to address the multi-modal problem in NAR more effectively and efficiently
 - Improve the accuracy while maintain the advantage of inference speedup
 - Instead of sacrificing the inference speedup with multiple iterations to trade off for accuracy
 - Learn better target-source alignment to provide more target-source dependency to reduce targettarget dependency
 - Better model target-target dependency with advanced methods

Open problems and future directions

- Unify all the modality (text, speech, image) in one NAR model?
 - Bridge the modality gap among CV/NLP/Speech
 - Currently we already see some trend, quantize image/speech into discrete tokens, maybe can unify in a single discrete token generation?
- For iterative generation, what connection/relationship can we build between diffusion model (continuous diffusion or VQ-Diffusion), flow model, and iterative refinement methods like Mask-Predict in NLP? What insight we can get to further inspire new methods?
- What is the challenges and opportunities in other sequence generation tasks beyonf NLP/Speech/CV?

Non-Autoregressive Sequence Generation

Jiatao Gu and Xu Tan Meta Al Research and Microsoft Research Asia

https://github.com/NAR-tutorial/acl2022

Hiring at Microsoft Research Asia!

- Research FTE (social/campus hire)
 - Generative Models and Data Generation
 - Machine Learning, Deep Learning
 - NLP (NMT, Summarization, Conversation, Pre-training, etc)
 - Speech (TTS/ASR)
- Research Intern
 - Speech, Music, NLP, ML

Machine Learning Group, Microsoft Research Asia Xu Tan xuta@microsoft.com

https://www.microsoft.com/en-us/research/people/xuta/

Thank You!

