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Non-Autoregressive Sequence Generation

(Part I: Introduction)
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Neural Sequence Generation

• Many real-world applications can be seen as sequence generation!
• We can transform any structured data into sequence 

• For instance, speech as wave sequence; images can be flattened into pixel sequences, etc.
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Autoregressive (AR) Sequence Generation

• Generate sequence token by token in an autoregressive way

• Factorize the joint probability in a chain rule

• Has been poplar in many sequence generation tasks (NLP, speech, CV) 
• Can be implemented with RNN/CNN/Transformer  

• Can be unconditional (a single decoder) or conditional (encoder-decoder)

Decoder
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Popular models in AR: Transformer & LLM

• Transformer (2017)
• Unleash the modeling power by removing the inductive 

bias in RNN and CNN  

through QKV attention

• Has become the model backbone for NLP, Speech and CV 

• GPT-1/2/3
• Large-scale pre-training models using autoregressive 

Transformer
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Transformer & LLM 

• Zero-shot / One-shot in-context learning with LLM

• Multi-modal generation (DALLE-1)
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Why do we care?

• Text generation models are mostly autoregressive 

• Each step needs a forward pass of deep Transformer layers.

Then, why do we want to explore other alternatives

(a possible illustration)
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AR model is slow

• Inference time linearly grows with sequence length

• Time consuming in real-time scenarios, especially for long text/speech/image sequence
• Text: 10~100

• Speech: 500 for spectrogram or 80K for waveform for a 1s speech

• Image: 65536 (256*256) for pixel and 256 (16*16) for tokens 
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Harmful biases in AR generation

• Exposure bias

• Exposure bias: ground-truth tokens are taken as input in training (teacher-forcing), but predicted 

tokens are taken as input in inference (free-run)

• Error propagation: later tokens will be affected by the accumulated errors in previous tokens

• Label bias

• The normalization constraint over vocabulary items at each decoding step in autoregressive 

models poses a harmful inductive bias which leads to learning miscalibrated distributions over 

tokens and sequences

• Order bias
• Left-to-right generation may not be the best order for generation, or some data prefers no order
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Non-autoregressive Text Generation

• Can we synthesize text in parallel like typical image synthesis? 

• We propose the first non-autoregressive translation (NAT) model, which

builds on top of Transformer.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive 
neural machine translation. ICLR 2018
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Evaluation protocol

How can we compare the performance between AR and 

NAR systems?

• Standard benchmark:

• Machine Translation, WMT14 En→ De

• Quality measure

• BLEU score

• Efficiency measure

• Latency (GPU batch=1, 

batch=full and CPU batch=1)

• Quality-efficiency trade-off figure
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Why is NAR difficult?

• The original NAR system is far from the AR baselines.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive 
neural machine translation. ICLR 2018

Models BLEU

Autoregressive Baselines 27.48

NAT 17.69

NAT with reranking 19.17
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Why is NAR difficult?

Typical errors made by a NAR system:

• Repetitive tokens (over generation)

• Shorter or broken sentences (under generation)

• Influent sentence (no/weak language model)

Fundamental issue:

• The independence assumption in the output space 

ignores the real dependency between target tokens.

• Maximum-likelihood training force to cover all 

possible modes

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

Real target 
data is “multi-

modal”
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Why is NAR difficult?

How AR system solve this problem?

• P(Vielen) * P(Dank|Vielen) * P(<eos>|Vielen Dank)

• P(Danke) * P(schon|Danke) * P(<eos>|Danke schon)

AR model explicitly models the dependency in the 

target space. Generation is to make choice at each 

step and affect the next choice.

• P(Vielen) * P(Dank)

• P(Danke) * P(schon)

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön
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How can we improve NAR models to match 
AR systems?

Xiao, Y., Wu, L., Guo, J., Li, J., Zhang, M., Qin, T. and Liu, T.Y., 2022. A Survey on Non-Autoregressive 
Generation for Neural Machine Translation and Beyond. arXiv preprint arXiv:2204.09269.

How can we further improve NAT?

• Data         → reduce the complexity
• Model      → increase the capacity
• Loss          → resolve uncertainty
• Learning  → ease the training difficulty



Non-Autoregressive Sequence Generation

(Part II: Methods)
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A principled goal

• The main challenge of NAR generation is “failure of capturing the target side 
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning 

Inference techniques Additional techniques that improve the final performance

20
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Semi-Autoregressive
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Fully NAR Models

• The simplest way of generating tokens in parallel.
• Time complexity: O(1)

• Pros:
• Simple to implement 

• Fastest decoding

• Easy to incorporate other improvements.

• Difficulties:
• Relatively worst performance

• CANNOT handle target token dependencies without 
other improvements

• Hard to work well on LONG sequences.

Decoder

Encoder

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

𝑦1 𝑦2 …𝑦𝑇

[mask][mask]…[mask]
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Example 1: vanilla NAT model

• Following the initial work, we can 
simply implement such vanilla NAR by 
removing causal masking in the 
Transformer decoder.

• Inputs to the decoder:
• Special mask tokens

• Soft-copy of encoder’s hidden states or 
embeddings 

• Naïve implementation is very bad:
• ~10 BLEU on raw dataset.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive 
neural machine translation. ICLR 2018
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• As a special case, fully NAR systems can be significantly improved by adding a 

small AR layer in the output. It will help to model the “missing” target side 

dependency without sacrificing too much on latency. 

• It is technically autoregressive, while most of the computation is done in the NAR 

part. In this sense, it is very different from typical Transformer-based models.

• Tiny AR layer can be:

• N-gram LM

• CRF

• Tiny RNN (e.g. ,1-layer GRU or SRU)

Fully NAR model + tiny AR layer
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• By adding the conditional random fields (CRF) 

on top of the original NAR model’s output, it 

considers the dependency of the neighbors:

• Apply low-rank/beam approximation to make 

the transition feasible for large vocabulary.

• Decoding is sequential but much faster than 

typical AR models.

Example 2: NAR + CRF layer

Z. Sun, Z. Li, H. Wang, D. He, Z. Lin, and Z. Deng, “Fast structured decoding for 
sequence models,” NeurIPS, vol. 32, pp. 3016–3026, 2019.



Partially NAR models

• AR at sequence level, output multiple tokens in parallel
• In the middle between AR and fully NAR models

• Time complexity: O(N/K) (K is the segment length)

• Pros:
• Produce better performance

• If tuning properly, it can achieve the same performance as AR

• Difficulties:
• Globally still AR, it did not change the linear complexity

• Speed-up is small

Decoder

Encoder

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

𝑦1 𝑦2 𝑦3𝑦4 …

<s><s>   𝑦1𝑦2 …
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Example 3: n-gram decoding

• Decode multiple tokens in parallel (usually n-gram), 
and then the overall sentence is still autoregressive.

• Relaxed causal mask: a block-wise attention which 
can make max use of the decoded contexts.

C. Wang, J. Zhang, and H. Chen, “Semi-autoregressive neural
machine translation,” in EMNLP, 2018, pp. 479–488 27



Example 4: Block-wise decoding

• A dynamic approach compared to 
“fixed” n-gram prediction…

• The model has three stages:
• Prediction: each step the NAR model 

predict an n-gram block.

• Verification: compare the prediction of 
NAR model, and the AR teacher’s 
prediction in a teacher forcing matter.

• Accept the sequence with longest match 
and move to predict next block.

Stern, M., Shazeer, N. and Uszkoreit, J., 2018. Blockwise parallel decoding for deep 
autoregressive models. Advances in Neural Information Processing Systems, 31.

Due to the use of AR 
teacher for verification, the 

model’s performance is 
guaranteed not worse than 
AR models, while achieving 

3x-4x speed-up!
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Locally AR models

• NAR at sequence level, output each segment in AR
• In the middle between AR and fully NAR models

• Time complexity: ~O(K) (K is the segment length)

• Also have similarities to NAR + tiny AR layer.

• Pros:
• Produce better performance

• Motivated by the fact the NAR models deal with local 
dependencies badly, e.g., repetitive words.

• Faster generation compared to previous type

• Difficulties:
• Need complex algorithm to merge the output or resolve 

conflicts between each position.

Decoder

Encoder

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

[mask]    [mask]
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Example 5: Neural Phrase-based Translation

• Pre-transformer era work, still based on RNNs.

• Similar to traditional statical machine 
translation, model is learned to translate 
phrase independently with local RNNs.

• Merging phrases need to run dynamic 
programming (DP) which limits its application 
to high-resource domains.

Huang, P.S., Wang, C., Huang, S., Zhou, D. and Deng, L., 2018, February. Towards Neural Phrase-
based Machine Translation. In International Conference on Learning Representations. 30



Example 6: Local autoregressive translation (LAT)

• Similar to NPMT, this paper also learned to 
predict local sequence with a small RNN 
locally.

• No DP needed, but a heuristic merging 
operation based on longest common string 
between two positions.

• Different from NAR + tiny RNN, it is still 
constant time. Because of the local AR, it 
can mostly remove artifacts like repetition.

X. Kong, Z. Zhang, and E. Hovy, “Incorporating a local translation mechanism into non-autoregressive 
translation,” in EMNLP, 2020, pp. 1067–1073
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Iteration-based Models

• Generate/refine the sequence iteratively. For each 
iteration,  the sequence output in based on NAR.

• Time complexity: O(K) or O(logN) (depending on the 
methods to use)

• Pros:
• General and simple to implement. The straightforward 

extension of fully NAR models.

• Best performance so far for NAR models.

• Difficulties:
• Trade-off between quality and latency. 

• The speed-up advantage challenged by “Deep encoder, 
shallow decoder”.

Decoder

Encoder

𝑦1 𝑦2 𝑦3 …𝑦𝑇

𝑦′1 𝑦′2 𝑦′3 …𝑦′𝑇

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

Due to time limits, we only 
introduce some classical 

models in this categories. 
We refer the readers to the 

reading list for more and 
recent approaches!

Kasai, J., Pappas, N., Peng, H., Cross, J. and Smith, N.A., 2020. Deep encoder, shallow decoder: 
Reevaluating non-autoregressive machine translation. arXiv preprint arXiv:2006.10369.32



Example 7: Mask-Predict

• Following similar training tasks of BERT 
(masked language model), we can directly 
use the mask prediction model for iterative 
generation.

• BERT training 15%, while CMLM is trained 
by randomly masking 0~100% tokens.

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers 
for language understanding. arXiv preprint arXiv:1810.04805.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of conditional masked 
language models,” in EMNLP-IJCNLP, 2019, pp. 6112–6121.
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• The BERT-style training did not tell 
us how should we inference in the 
testing time.
• As it is just forcing the model to 

predict the masked tokens from the 
remaining. 

• Skeptical decoding -- an annealing-
based method was used for 
iterative translation
• Set the target iteration T.

• Start with all masks;

• For each iteration t, make the 
prediction, and then mask (1-t/T) * N 
tokens with lowest scores.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of conditional masked 
language models,” in EMNLP-IJCNLP, 2019, pp. 6112–6121.

Only keep the most confident 
tokens in early iterations, and 
gradually expand the number 

of words kept.

CMLM has a strong connection 
to diffusion-based models!
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Example 8: Insertion Transformer

M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, “Insertion transformer: Flexible sequence 
generation via insertion operations,” in ICML. PMLR, 2019, pp. 5976–5985

• There is not only one way to perform 
iterative generation. Sentence can also be 
composed by insertion!

• Mask-Predict is constrained to know 
(predict) the length before generation, while 
with insertion, it is possible to generate 
sequences in any lengths during iteration.

• Generation terminates if all positions are 
not insertable. The complexity is logarithm.
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Example 9: Levenshtein Transformer (LevT)

• With one step further, LevT
combines insertion & deletion, 
which means the model can 
freely edit over the generation, 
change the length and 
terminate the iteration in a 
dynamic way.

• For each iteration, it contains 
three forward passes:
• Parallel deletion

• Parallel insertion (predict # of 
masks, mask prediction) J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, 

pp. 11 181–11 191, 2019
37
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• LevT is trained through imitation learning, 

with a dual policy (simplifie version):

• Learning to insert tokens by predicting 

random deletion;

• Learning to delete tokens by fixing errors 

made by insertion;

• The expert action are automatically 

generated based on Levenshtein distance 

with ground-truth.

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, pp. 11 
181–11 191, 2019
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• An example of iterative refinement using LevT:

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, pp. 11 
181–11 191, 2019
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• Speed-up of LevT compared to CMLM (constant time) and 

Insertion Transformer (logarithm time)

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, pp. 11 
181–11 191, 2019
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Latent Variable Models for NAR generation

The concept of “latent variables” are very important for NAR!

• The additional variables are used to capture uncertainty / dependency.

• Iteration-based models can also be seen as “latent-variable models”

• All the intermedia decoding results can be seen as latent.

• Y0 (all masks) → Y1 → Y2 → … → YT (target sequence)

Why latent variables will be useful in NAR generation?

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

Z=1

Z=2

Z=3

Latent variables

Suppose we only have 
three translation for this 

sentence, and we 
determine one mode first, 

then the output can be 
generated in NAR!
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Latent Variable Models for NAR generation

• Normally, we need to marginalize the latent variables, or maximize the 

evidence lower bound (ELBO):

𝐿𝐸𝐿𝐵𝑂 = 𝔼𝑞 𝑍 𝑋 log𝑃 𝑋 𝑍 + log 𝑃(𝑍) + 𝐻(𝑞)

• In practice, we can either choose to work on pre-defined “latent variables” 

with some off-the-shelf predictor or learn everything jointly (e.g., VAEs).
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Length predictor

Most NAR systems at least have one “latent variable” – length

• AR model usually uses the special symbol <eos> to show the end of 

generation, and the length is determined when the generation ends.

• However, for most NAR models (except for CTC-based models) need to 

pre-determine the “length” before NAR generation can starts. In this 

sense, length itself can also be used to capture some dependency 

information!

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

L=2

L=2

L=1
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Length predictor

Types of length predictor:

• Training a separate classifier to predict the correct length 

• Using the encoder’s hidden states and pooling

• Using specific [LENGTH] token in the encoder

• Statistics

• In some work, it is also possible to directly use the dataset statistics

• Mostly, B is the size of length beam, and it relies on the re-ranking.
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Intermedia predictors

It is a vague categories, which refers to modeling latent variables:

• With clear definitions / meanings

• Predictable given the target or source-target pairs

• Off-the-shelf predictors are available (and typically fixed) to predict these 

information

• Not optimal, and the performance affected by the predictor.

Length can be seen as a special “latent variable” as we don’t need to separate 

inference network to infer that.
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Example 10: Fertility predictor

• Fertility: how many words each 

source token will be translated 

to, which is estimated by 

alignment tools.

• Fertility can also be predicted 

in a NAR way.

• Bonus point: we don’t need 

additional length predictor as 

we can add fertilities together.
Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive 
neural machine translation. ICLR 2018
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Example 11: ReorderNAT

• Fertility can only partially help the 

translation, while it is not possible 

to handle reordering in MT.

• ReorderNAT used an additional 

module to predict reordering 

(which can be either NAR or light-

weight AR model).

• Ordering can also be obtained from 

alignment tools.

Q. Ran, Y. Lin, P. Li, and J. Zhou, “Guiding non-autoregressive neural machine translation decoding with reordering 
information,” in AAAI, vol. 35, no. 15, 2021, pp. 13 727–13 735



49

Example 12: SynST

• Similar to ReorderNAT, we can also plug-in 

other type of predictors in the middle of 

encoder and decoder.

• SynST learns to autoregressively predict 

“high-level” chunks using a light-weight 

AR model, and then generate texts based 

on these chunks.

• Chunk information can be obtained from 

a syntactic parser.

N. Akoury, K. Krishna, and M. Iyyer, “Syntactically supervised transformers for 
faster neural machine translation,” in ACL, 2019, pp. 1269–1281.
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Variational Autoencoders

Different from the previous case, such models are more general

• Latent variables have NO clear definitions / meanings

• Need to optimize both the generator and the encoder (and potentially 

also the prior).

• Basically, we can either model it with Continuous VAE or Discrete VAE. 

Both have pros and cons.
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Example 13: Continuous VAEs (LaNMT)

• One way is to model the latent as 

standard continuous VAE with spherical 

Gaussian prior.

• Inference time:

• with mean / samples from the prior

R. Shu, J. Lee, H. Nakayama, and K. Cho, “Latent-variable non-autoregressive neural machine translation with 
deterministic inference using a delta posterior,” in AAAI, vol. 34, no. 05, 2020, pp. 8846–8853.

However, the mean 
vectors are usually not 

the best choice.
The prior is TOO simple 

to capture complex 
dependences!
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Problem of simple VAEs

• Spherical Gaussian prior is typically too 

weak to capture complex dependencies.

• The mean vector of the prior is usually far 

from the posterior.

• Iterative inference with delta posterior 

R. Shu, J. Lee, H. Nakayama, and K. Cho, “Latent-variable non-autoregressive neural machine translation with 
deterministic inference using a delta posterior,” in AAAI, vol. 34, no. 05, 2020, pp. 8846–8853.
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Example 14: Continuous VAEs + EBM

• As a follow-up, it is also possible 

to train an energy function to 

estimate gradients in the 

continuous space.

• The goal is to find z closer to the 

posterior more efficiently!

Lee, J., Shu, R. and Cho, K., 2020. Iterative refinement in the continuous space for 
non-autoregressive neural machine translation. EMNLP 2020 (pp. 1006-1015). 
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Example 15: FlowSeq

• Another direction is to actively 

learn a more complex prior

• Flowseq is a model which uses 

flow to map Gaussian noise to a 

complex prior. 

X. Ma, C. Zhou, X. Li, G. Neubig, and E. Hovy, “Flowseq: Non-autoregressive conditional 
sequence generation with generative flow,” in EMNLP-IJCNLP, 2019, pp. 4282–4292.
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Example 16: Discrete VAEs (VQ-VAE)

• Training of VQ-VAE for NAR 

generation are usually two steps:

• Learning the encoder and decoder

• Learning the AR prior over the 

discrete symbols.

• Although the prior part is based on 

AR, it is typically shorter than the 

original length.

L. Kaiser, S. Bengio, A. Roy, A. Vaswani, N. Parmar, J. Uszkoreit, and N. Shazeer, “Fast decoding 
in sequence models using discrete latent variables,” in ICML.   PMLR, 2018, pp. 2390–2399.

Roy, A., Vaswani, A., Neelakantan, A. and Parmar, N., 2018. Theory and 
experiments on vector quantized autoencoders. arXiv preprint arXiv:1805.11063.
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Example 17: Discrete VAEs (latent-GLAT)

• Recently, there are also papers applying NAR 

generation in the discrete codes as well.

• Compared to the typical framework that relies 

on AR model to generate the prior, it seems 

more efficient to generate them iteratively.

Y. Bao, H. Zhou, S. Huang, D. Wang, L. Qian, X. Dai, J. Chen, and L. Li, “latent-glat: 
Glancing at latent variables for parallel text generation,” ACL, 2022.



A principled goal

• The main challenge of NAR generation is “failure of capturing the target side 
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning 

Inference techniques Techniques that improve the final performance

58



Objective Functions

Standard Cross-
Entropy Loss

Loss with 
latent 

alignments

Loss beyond 
token-level

59



Cross Entropy 

• Most NAR models apply the standard loss function (cross-entropy) for training

• Standard cross entropy will compare tokens one by one between model 
prediction and ground-truth, which requires the length has to be correct!

60



Problems of Cross Entropy

• Over penalty for mis-alignment! (For AR model it is not an issue)

• Token-level CE does not consider the global correctness, which aggravates the 
weakness in capturing target side dependency.

• Maximum likelihood training will tend to cover all possible modes, however, as 
we discussed, NAR model lack the ability of capture target side dependencies.

61



Example 18: CTC & AXE

• Inspired from ASR literature, we replace can replace
objective with CTC that marginalizes all possible alignments
• It assumes output always longer than the target, which in text 

generation we need to up-sample the decoder.

• The final output is decoded by collapsing repetitive tokens. 

• Similarly, AXE is another loss using the monotonic alignment 
to improve cross entropy
• Difference from CTC: (1) no need to up-sample; (2) using DP to find 

the best alignment instead of marginalizing the alignments.

J. Libovickỳ and J. Helcl, “End-to-end non-autoregressive neural 
machine translation with connectionist temporal classification,” 
in EMNLP, 2018, pp. 3016–3021.

G. Marjan, V. Karpukhin, L. Zettlemoyer, and O. Levy, “Aligned cross entropy for 
non-autoregressive machine translation,” in ICML.   PMLR, 2020, pp. 3515–352362



Example 19: OAXE

• Both CTC and AXE can only resolve the 
mismatch when for “monotonic” 
alignment, while in practice re-ordering 
exists in real data, especially for tasks 
such as MT.

• Order-agnostic cross-entropy (OAXE) 
loss applies the Hungarian algorithm to 
find the best possible alignment, which 
allows non-monotonic alignments in 
NAR generation.

C. Du, Z. Tu, and J. Jiang, “Order-agnostic cross entropy for non-autoregressive 
machine translation,” in ICML.   PMLR, 2021, pp. 2849–2859.
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Example 20: N-gram loss

• [a] N-gram level loss minimizes the 
Bag-of-Ngrams (BoN) difference 
between the model output and the 
reference sentence.

• [b] proposed “edit invariant 
sequence loss (EISL)” to replace CE, 
which also focuses on n-gram 
matching as convolution.

[a] C. Shao, J. Zhang, Y. Feng, F. Meng, and J. Zhou, “Minimizing the bag-of-ngrams difference for non-
autoregressive neural machine translation,” in AAAI, vol. 34, no. 01, 2020, pp. 198–205.

[b] G. Liu, Z. Yang, T. Tao, X. Liang, Z. Li, B. Zhou, S. Cui, and Z. Hu, “Don’t take it literally: An 
edit-invariant sequence loss for text generation,” arXiv preprint arXiv:2106.15078, 2021.64



Example 21: ENGINE

• We can further go from n-gram level to 
entire sequence level with a learned energy 
function.

• In ENGINE, a pretrained AR model is used as 
an energy score for evaluating the output 
globally. 

• Gradient is passed via straight-through / 
softmax during training.

L. Tu, R. Y. Pang, S. Wiseman, and K. Gimpel, “Engine: Energybased inference networks for 
non-autoregressive machine translation,” in ACL, 2020, pp. 2819–2826 65



Example 22: GANs 

• Extending similar ideas from 
learning with a pretrained 
energy function, it is also 
possible to learn jointly!

• For example, it might be useful 
to train text-GAN in NAR 
settings. 

Huang, F., Guan, J., Ke, P., Guo, Q., Zhu, X. and Huang, M., 2020. A text GAN for 
language generation with non-autoregressive generator. 
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A principled goal

• The main challenge of NAR generation is “failure of capturing the target side 
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning 

Inference techniques Techniques that improve the final performance
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Sequence-level Knowledge Distillation (KD)

• Knowledge distillation 
• Use the soft logit probability prediction from a teacher model to teach a student model

• Knowledge distillation in sequence tasks
• Token-level knowledge distillation 

• The logit probability of each token is used to teach student

• Sequence-level knowledge distillation
• The sequence generated by the teacher model is used to teach student 

Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).
Kim Y, Rush A M. Sequence-level knowledge distillation[J]. arXiv preprint arXiv:1606.07947, 2016.
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Sequence-level Knowledge Distillation (KD)

• Distillation at sequence level can significantly improve NAT systems:

• 1. train teacher autoregressive model

• 2. replace targets with teacher’s prediction

• 3. train NAT models on the synthetic pairs

• Almost all NAT systems benefit from KD:

w/o distillation w/ distillation

Vanilla NAT (Gu et al, 2017) 11.4 19.5 (+8.1)

FlowSeq (Ma et al, 2019) 18.6 21.7 (+3.1)

LevT (Gu et al, 2019) 25.2 26.9 (+1.7)

Train AT model

Decode from AT 
model

Train NAT model
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Why KD works?

• Simplify the data distribution of target data, and thus reduce target 

data dependency  
• Data is complicated, the teacher (AR) model only learn the most dominated 

distribution from the data

• During beam search/sampling, the most probability data pattern is 

generated instead of the whole data distribution

• E.g., “Thank You” → “Vielen Dank” or “Danke” , after distillation may only 

have “Danke” in German, reduce the multi-modality of target data

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019



72

• Quantitive results: A cross-entropy based measure is used for dataset complexity 

and prepare distilled data from different teacher models.

How KD works?

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019
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• NAR models perform the best when the data complexity matches the model’s 

capacity

How KD works?

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019
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Problems of KD

• KD makes the training pipeline too long

• You always need to first train an AR model as the teacher

• The capacity of NAT models should be correlated with the complexity of 

the distilled dataset

• KD hurts the lexical choice especially on low-frequency words.



A principled goal

• The main challenge of NAR generation is “failure of capturing the target side 
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning 

Inference techniques Techniques that improve the final performance
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Learning paradigm

Advanced Learning 
Paradigm

Multi-
task/Curriculum 

Learning

Pre-training
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Multi-task and Curriculum Learning

• Directly learning NAR models over a given dataset is hard, and easily gets 
stuck into bad optimum. 

• NAR models can effectively benefit from learning multiple (easier) tasks 
jointly, with a better curriculum

• Easier tasks:
• Learning with partially masked input

• Learning with partially autoregressive generation

• Learning on smaller granularity
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Example 23: GLAT

• In the original Mask-Predict, it is found 
that when training on sequences with 
different mask ratio, the performance of 
single iteration model is better than those 
trained directly on “full-mask” settings.

• Such results in fact indicate that, when 
training NAR models, it is beneficial to 
ease the difficulty by jointly training on 
glanced targets.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of 
conditional masked language models,” in EMNLP-IJCNLP, 2019, pp. 6112–6121.
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• Compared to Mask-Predict where the glancing is completely random, it is possible 

to design a curriculum:  We can control the number of tokens being glanced based 

on the training progress.

Example 23: GLAT

distance

generación de lenguaje eficiente

generación lenguaje eficiente de

NAR Decoder

Target:

Prediction:

[mask] [mask] [mask] [mask]

Encoder

efficient language generation

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, “Glancing transformer for non-
autoregressive neural machine translation,” in ACL-IJCNLP, 2021, pp. 1993–2003.
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• Compared to Mask-Predict where the glancing is completely random, it is 

possible to design a curriculum:  We can control the number of tokens being 

glanced based on the training progress.

efficient language generation

generación de lenguaje eficiente

NAR Decoder

Supervision:

[mask] [mask] lenguaje [mask]

Encoder

Example 23: GLAT

Glanced target token

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, “Glancing transformer for non-
autoregressive neural machine translation,” in ACL-IJCNLP, 2021, pp. 1993–2003.
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Example 24: Task-level curriculum learning

• Task-level curriculum 

learning to shift the 

training strategy from AR 

to SAR gradually, finally 

to NAR generation.

J. Liu, Y. Ren, X. Tan, C. Zhang, T. Qin, Z. Zhao, and T.-Y. Liu, “Task-level curriculum learning 
for non-autoregressive neural machine translation,” in IJCAI, 2021, pp. 3861–3867.

AR training

Partially NAR 
training (n-gram)

Fully NAR training

K=1

K=2,4,8,16

K=N
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Example 25: Multi-granularity Curriculum Learning

• Curriculum learning can also be performed 

on data with different translation 

granularities.

• Training data is divided into words, 

phrases, and sentences. A progressive 

multi-granularity training strategy is used 

to train the model from easy to hard

L. Ding, L. Wang, X. Liu, D. F. Wong, D. Tao, and Z. Tu, “Progressive multi-granularity training for non-
autoregressive translation,” in Findings of ACL-IJCNLP, 2021, pp. 2797–2803.
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Improve NAR generation with Pre-training

• Like typical AR sequence generation, NAR models can also be 

benefitted by fine-tuning from a pretrained models, especially from 

“Encoder-only” pretraining such as BERT.

Y. Su, D. Cai, Y. Wang, D. Vandyke, S. Baker, P. Li, and N. Collier, “Non-autoregressive text generation 
with pre-trained language models,” in EACL, 2021, pp. 234–243.

P. Li, L. Li, M. Zhang, M. Wu, and Q. Liu, “Universal conditional masked language pre-training for 
neural machine translation,” ACL, 2022.



A principled goal

• The main challenge of NAR generation is “failure of capturing the target side 
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning 

Inference techniques Techniques that improve the final performance
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Length beam / Noisy Parallel Decoding

• First predict a target length L, and then construct a length 

beam [L-B, L+B] with beam size 2B+1

• Use NAR model (encoder one time, decode 2B+1 times) to 

generate sentences with these lengths

• For latent-variable based models, we can further sample 

more by sampling multiple latent codes, and then choose 

the best one with highest model scores.
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AR model re-ranking

• After obtaining multiple candidates, we can use AR model to 

give a probability score to help select a better candidates

• Usually weighted combine the probability score from both AR 

and NAR for final reranking



87

• Similar to the common practice in ASR, it is also useful to combine n-gram 

LM into NAR generation, while maintaining overall speed-up.

Combine with n-gram LM

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine 
Translation: Tricks of the Trade. ACL 2021.
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A practical system of fully NAR model for 
machine translation

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine 
Translation: Tricks of the Trade. ACL 2021.
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• Combine the technique of KD 

with proposed model, we can 

finally close the performance gap 

between autoregressive models.

• In the meantime, the fully NAT 

model maintains over x17 speed-

up.

Final System

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine 
Translation: Tricks of the Trade. ACL 2021.
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Final System

Speed vs Quality Trade-off
• Iterative NAT models (LevT and CMLM) require multiple iterations to achieve reliable 

performance with the sacrifice of latency

• Speed advantage of fully NAT models shrinks when parallelism is constrained

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine 
Translation: Tricks of the Trade. ACL 2021.
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Final System

How important all these techniques?

● The combination without KD has a clear 
performance drop compared to the one with KD

● CTC-based model obtains better accuracy 
through marginalizing all valid alignments

● The model with GLAT is more superior to the one 
with the RND training method, however it 
performs similarly with VAEs

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine 
Translation: Tricks of the Trade. ACL 2021.



Summary of Part II

• The main challenge of NAR generation is “failure of capturing the target side 
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning 

Inference techniques Additional techniques that improve the final performance
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Outline

• Part I: Introduction (Jiatao Gu)

• Part II: Methods (Jiatao Gu)

• Part III: Applications (Xu Tan)

• Part IV: Open Problems (Xu Tan)

https://github.com/NAR-tutorial/acl2022
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https://github.com/NAR-tutorial/acl2022
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Outline

• Overview of NAR generation tasks in NLP/Speech/CV
• Target-target vs target-source dependency

• Key tasks
• Neural machine translation
• Text error correction
• Speech to text recognition
• Text to speech/Singing voice synthesis
• Image  generation

• Summary of NAR applications
• Benefits of NAR for different tasks
• Addressing target-target dependency (model multimodal distributions)
• Addressing target-source dependency (learn source-target alignment)
• Data difficulty vs model capacity
• Streaming vs NAR, AR vs Iterative NAR
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Target-target vs target-source dependency

• Tradeoff in dependency
• Target-target dependency: dependency among target tokens

• Target-source dependency: dependency on source tokens

• If target-target is stronger than target-source dependency →more information is needed 
from target tokens instead of source tokens → NAR is more difficult

• Connection to multi-modality
• Multi-modality: P(x|y) is not single-modal, not one-one mapping  

• e.g., “Thank You” → “Vielen Dank” or “Danke”

• If target-source dependency dominates, then P(x|y) is more like single-modal, a source token 
will have one definite translation

• If target-target dependency dominates, then P(x|y) will be like multi-modal, a source token 
will have multiple token translations
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Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Target-source dependency

98

Dependency Type Task Alignment

Target has correspondence with source Speech Enhancement Alignment inherently

Voice Conversion

Text to Speech Need alignment

Singing Voice Synthesis Music score alignment

Speech Recognition CTC Alignment

Target is a minor change of source Text Error Correction Locate the minor changes 

Text Style Transfer Content unchange and style change

Target is a translation of source Machine Translation Alignment through attention

Target is implicitly correlated to source Dialogue Generation Absorb the high-level abstraction

Image Generation Category information 



Target-target dependency
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Dependency Type Task Description

Text Machine Translation 

Discrete tokens in languages are contextualized, explained 
mutually. 
Language tokens have strong mutual dependency

Text Summarization

Text Error Correction

Text Style Transfer

Dialogue Generation

Speech Recognition

Speech and Image Text to Speech For continuous signal like speech/sound/image, they 
depends on the concept, like speech frames depend on a 
word, image pixel depend on a class.
Maybe weaker mutual dependency 

Singing Voice Synthesis

Image Generation



Outline

• Overview of NAR generation tasks in NLP/Speech/CV
• Target-target vs target-source dependency

• Key tasks
• Neural machine translation
• Text error correction
• Speech to text recognition
• Text to speech/Singing voice synthesis
• Image  generation

• Summary of NAR applications
• Benefits of NAR for different tasks
• Addressing target-target dependency (model multimodal distributions)
• Addressing target-source dependency (learn source-target alignment)
• Data difficulty vs model capacity
• Streaming vs NAR, AR vs Iterative NAR
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Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Text error correction

• Text errors: writing assistant, search engine, speech recognition, optical character 
recognition, etc.

• Input: text sequence with errors; Output: corrected text sequence 

• Naïve NAR solution usually fails 

• Challenges
• Error detection and error correction, to avoid under/over-correction

• Few modifications in text error correction (e.g., 10% WER)

102

Design with inductive bias, instead of black-box end-to-end learning in NAR!



Text error correction

• How to detect errors and correct errors? 

• Implicit way 
• Target-source attention
• CTC (connectionist temporal classification): duplicate source tokens multiple times, and use CTC loss 
𝑃 𝑦 𝑥 = σ𝑧∈𝜑(𝑦)𝑃(𝑧|𝑥)

• Explicit way
• Detect the exact error patterns of insertion/deletion/substitution 
• Or use duration as an approximation: 0 for deletion, 1 for substitution or nochange, 2 or more for 

insertion
• Expand the source tokens to the length of target tokens according to duration, and generate correct 

tokens
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Text error correction

• Implicit error detection and correction
• Target-source attention (NAR)

• Determine the whole length of target sequence, but no need the exact alignment

• Use QKV attention:

• Query: blank token/ position embedding according to the predicted length 

• Key/Value: source hidden

• CTC (connectionist temporal classification) 𝑃 𝑦 𝑥 = σ𝑧∈𝜑(𝑦)𝑃(𝑧|𝑥)

• e.g., I have a hat → I have a cat

• Input of the CTC model:       I I I have have have a a a hat hat hat (duplicate 3 times)

• Output of the CTC model:    I I ∅ ∅ have   ∅ a a ∅ cat  ∅ ∅

• CTC path merge:                     I              have           a        cat
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Text error correction

• Explicit error detection and correction
• Exact insertion/deletion/substitution

• Detect each source token as insertion/deletion/substitution

• Still need to determine the length of insertion for parallel generation
• Or directly use duration as an approximation: 0 for deletion, 1 for substitution or nochange, 2 or 

more for insertion

• However, how to get the label for insertion/deletion/substitution or duration? 
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Text error correction

• How to get the label? Through target-source alignment!
• Naïve hard match, not optimal

• Alignment with dynamic programming, based on edit distance

106

Source:  B B D E F

Target:   A B C D F

Source:  |B|,|B|,|B|,|D|,|E|,|F|

Target:   |A|,|B|,|C|,|D|,|  |,|F|

2 1 1 0 1

Leng Y, Tan X, Zhu L, et al. FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition[J]. NeurIPS 2021



Text error correction

• How to use the alignment label? 
• Provide duration label or provide error detection label 
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Text error correction

• In training correction model, usually data augmentation/pre-training is used
• Why? Few modifications in text error correction (e.g., 10% WER), few training signal can be 

leveraged 

• How to augment data? 
• Manually augment: insertion/deletion/substitution

• The probability distribution of deletion, insertion and substitution is set to the error distribution

• Model based augment
• BERT model with masked language modeling 
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Text error correction

• Text error correction on speech recognition (FastCorrect, NeurIPS 2021)
• ASR model is a Conformer model from ESPnet, on Chinese AISHELL-1 dataset
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Text error correction

• Text error correction on speech recognition (FastCorrect, NeurIPS 2021)
• Compare with deep encoder and shallow decoder (no inductive bias)
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Text error correction

• Is implicit detection or explicit detection good enough? 
• Implicit: does not provide clear signal about which tokens are incorrect

• Explicit: suffers from detection accuracy (insertion/deletion/substitution)

• A better way: a soft detection mechanism: neither too implicit nor too explicit 
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Text error correction

• Extensions of error correction on ASR/OCR or other text generation models
• N-best output 

• Voting effect: tokens from multiple sentences can verify the correctness with each other 

• e.g., “I have a cat”, “I have a hat”, “I have a bat”

• Source speech/image information
• Two encoders, one for speech/image, the other for error text 

• Use cross-attention to serve as additional input

• Action based correction
• First predict the correction action: keep, delete, generate

• Then generate the corresponding correction 
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Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Automatic Speech Recognition

• Input: speech (waveform/spectrogram) sequence 

• Output: text (word/BPE/character/phoneme) sequence

• Target dependency comparison with NMT
• NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next 

should be B, otherwise if the first is C, the next should be D.

• ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next 
should be B. If the first is C, the next should be still B. 

114

Target dependency in ASR is weaker than that in NMT



Automatic Speech Recognition

• CTC (connectionist temporal classification)

𝑃 𝑦 𝑥 = ෍

𝑧∈𝜑(𝑦)

𝑃(𝑧|𝑥)

𝜑(𝑦) is called CTC path
• e.g.,  𝑧: HHE∅L∅LOO, or ∅HHEEL∅LO  → 𝑦:HELLO

• CTC assumes no dependency among the target tokens, but can still works well

• But modeling target dependency can still bring improvement
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Automatic Speech Recognition

• Refine the CTC output with bidirectional dependency
• Token-level (after CTC merge): 

• Mask-CTC: CMLM decoder refine the CTC output 

• Improved Mask-CTC: with length adjustment

• Insertion Transformer:

• KERMIT

• Frame-level (before CTC merge)
• Imputer: 

• Align-Refine: 

• Align-Denoise

• Intermediate CTC

• Self-conditioned CTC: DSLSP
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Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.



Automatic Speech Recognition
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Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.



Automatic Speech Recognition
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Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.



Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Text to Speech

• Input: text (character/phoneme) sequence

• Output: speech (waveform/spectrogram) sequence

• We will mainly focus on acoustic model: phoneme to mel-spectrogram mapping, and 
vocoder: mel-spectrogram to waveform mapping

120

Text 
Analysis

Acoustic 
Model

VocoderText Speech
Phoneme Mel-

spectrogram



Text to Speech

• Target dependency comparison with NMT and ASR
• NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next 

should be B, otherwise if the first is C, the next should be D.

• ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next 
should be B. If the first is C, the next should be still B. 

• Besides, NMT and ASR rely on target dependency for language modeling 

• TTS

• Speech frames largely depend on the source word, waveform samples largely 
depend on the condition spectrogram

• Dependency among speech frames and waveform samples? Yes, indeed, but…

121



Text to Speech

• Target dependency comparison with NMT and ASR
• Discrete tokens in languages is contextualized, explained mutually. Language tokens have strong 

mutual dependency
• But for continuous signal like speech/sound/image,  they depends on the concept, like speech 

frames depend on a word, image pixel depend on a class
• Maybe weak mutual dependency among signal itself, that is why parallel generation model is so 

popular in image or speech generation.

• Another point
• Waveform samples and image pixels are so long in sequence, inference speed is extremely slow for 

autoregressive generation. Strong demand for NAR generation!

• Some specific reasons in speech/spectrogram generation: 
• Usually, speech frame is obtained via STFT with window/hop size (50ms/12.5ms), two adjacent frames 

have 3/4 overlapping. Autoregressive generation will lead to copy, unstable to model.
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Text to Speech

• Target dependency comparison with NMT and ASR
• NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next 

should be B, otherwise if the first is C, the next should be D.

• ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next should 
be B. If the first is C, the next should be still B. 

• Besides, NMT and ASR rely on target dependency for language modeling 

• TTS

• Speech frames largely depend on the source word, waveform samples largely 
depend on the condition spectrogram

• Dependency among speech frames and waveform samples? Yes, indeed, but…
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Based on above analysis, TTS has much weaker target 
dependency than NMT, and slightly weaker than ASR



Text to Speech: NAR for speedup

• Compared with autoregressive mel-spectrogram/waveform generation

• Sequence is very long, e.g., 1s speech, 500 mel, 24000 waveform points

• Slow inference speed
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Text to Speech: NAR for robustness

• AR model (Tacotron 2, DeepVoice 3, Transformer TTS) not robust: 
words skipping and repeating; 

• Encoder-decoder attention: Attention between mel-spectrogram and phoneme: 
monotonic and diagonal 
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You can call me directly at 4257037344 or my cell 4254447474 or 
send me a meeting request with all the appropriate information.

And it is worth mention in
passing that, 
as an example of fine 
typography



Text to Speech: NAR for controllability

• AR model automatically determines the length of speech
• Lack of controllability: hard to control the voice speed/prosody in AR generation
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was executed on a gibbet in front of his victim’s house.

after dinner | he went into hiding for a day or two



Text to Speech: NAR overview

• Overview of NAR models in TTS

• N is sequence length, T is iteration step

127



Text to Speech: FastSpeech

• Design of FastSpeech

• Generate mel-spectrogram in parallel

(for speedup, 270x)

• Remove the text-speech attention mechanism 

(for robustness, no word skipping/repeating)

• Feed-forward transformer with length regulator 

(for controllability, speed control)
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https://speechresearch.github.io/fastspeech/

https://speechresearch.github.io/fastspeech/


Text to Speech: FastSpeech 2

• FastSpeech 2

• Improve FastSpeech (one-to-many mapping)

• Use variance adaptor to predict duration, 

pitch, energy, etc

• Simplify training pipeline of FastSpeech (KD) 

• FastSpeech 2s: a fully end-to-end parallel 

text to wave model
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https://speechresearch.github.io/fastspeech2/p(x|y) multimodal distribution

https://speechresearch.github.io/fastspeech2/


Text to Speech: Multi-modal

• How to model multi-modal distribution p(x|y)
• Simplify the multimodal distribution p(x|y)

• Simplify target: Data distillation: lossy,  Data transformation: Short Time Fourier Transformation 
(STFT), DCT, Wavelet

• More input information: Pitch, duration, energy, speaker ID, prosody tag, etc.. 

• Better alignment: duration/alignment modeling 

• Advanced modeling for multimodal distribution
• L1: Laplace distribution, L2: Gaussian distribution

• Mixture of Gaussian/Laplace/Logistic: multimodal distribution 

• High-order statistics loss: high-order moment, SSIM

• Model-based loss (any distribution): classifier, discriminator in GAN

• Advanced generative models (AR/Flow/VAE/Diffusion/GAN, etc)
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Text to Speech: Better alignment

• Duration modeling
• Statistic parametric speech synthesis→ AR model → NAR

• Duration → attention, no duration → duration prediction (technique renaissance!)
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FastSpeech Glow-TTS
EATS Parallel Tacotron 2



Text to Speech: Advanced generative models

• Flow/VAE/Diffusion/GAN
• A comparison among different generative models for TTS

• Simplicity in math formulation and optimization

• Support parallel generation

• Support latent manipulation

• Support likelihood estimation
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GAN is weak in latent manipulation, since the condition in TTS is so strong, P(y|x) is not that much 
multi-modal compared to image synthesis, and some GAN based model do not add random noise



Text to Speech: Flow

133

• Map between data distribution p(x) and standard (normalizing) prior 
distribution p(z)

• Category of normalizing flow
• AR (autoregressive): AF (autoregressive flow) and IAF (inverse autoregressive flow)

• Bipartite: RealNVP and Glow



Text to Speech: Flow (vocoder)

• Parallel WaveNet (AR)

• Knowledge distillation: Student (IAF), Teacher (AF)

• Combine the best of both worlds

• Parallel inference of IAF student

• Parallel training of AF teacher

• Other works
• ClariNet
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Text to Speech: Flow (vocoder)

• WaveGlow (Bipartite)

• Flow based transformation

• Affine Coupling Layer

• Other works

• FloWaveNet

• WaveFlow
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Text to Speech: Flow (acoustic model)

• Glow-TTS

• Log likelihood 

• Prior is learnt from phoneme text

• Alignment A is obtained by monotonic alignment search

• Other works

• FlowTTS, Flowtron

• EfficientTTS
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Text to Speech: GAN

137

• Adversarial loss

• Category of GAN based vocoders



Text to Speech: GAN (vocoder)

• HiFiGAN
• Multi-Scale Discriminator (MSD)

• Multi-Period Discriminator (MPD)
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Text to Speech: Diffusion

• Diffusion probabilistic model

• Forward (diffusion) process: 

• Reverse (denoising) process
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Text to Speech: Diffusion

• Loss derived from ELBO: 

• Training and inference process
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Text to Speech: Diffusion

• Diffusion model for vocoder: DiffWave, WaveGrad

• Diffusion model for acoustic model: Diff-TTS, Grad-TTS

• Improving diffusion model for TTS
• PriorGrad, SpecGrad, DiffGAN-TTS, WaveGrad 2, etc

• With sufficient diffusion steps, the quality is good enough, but latency is high 

• How to reduce inference cost while maintaining the quality is challenging, and 
has a long way to go

141



Text to Speech: NAR with human-level quality

• NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)

• Leverage VAE to compress high-dimensional waveform x into frame-level 
representations z~q(z|x), and is used to reconstruct waveform x~p(x|z)

• To enable text to waveform synthesis, z is predicted from y, z~p(z|y) 

• However, the posterior z~q(z|x) is more complicated than the prior z~p(z|y). 
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Tan X, Chen J, Liu H, et al. NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality[J]. arXiv 2022



Text to Speech: NAR with human-level quality

• Solutions in NaturalSpeech
• Phoneme encoder with large-scale phoneme pre-training 

• Differentiable durator

• Bidirectional prior/posterior

• Memory based VAE
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Text to Speech: NAR with human-level quality

• Evaluations of NaturalSpeech
• MOS and CMOS on par with recordings, p-value >> 0.05
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Achieving human-level quality on LJSpeech dataset for the first time!



Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Singing voice synthesis

• Input: lyric/score (phoneme/pitch/duration); output: singing voice

• Target-source dependency is even stronger than target-target dependency when 
compared with text to speech synthesis
• Duration and pitch in score can decide the duration/pitch in singing voice in a large extent
• NAR is preferred 

• Generative models are similar to that used in speech synthesis 

• Only slight difference in alignment modeling
• Given a rough duration and pitch in music score, predict more accurate duration and pitch in the 

singing voice
• Since human cannot always sing according to music score, both in duration and pitch
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Singing voice synthesis

• But singing has its distinctive characteristics other than speaking voice
• Pitch/duration range is wider than speaking

• Data space is larger (#phoneme * #pitch * #duration) than speech

• Many singing techniques: trill, glide, opera singing, etc

• High expressiveness with high fidelity (e.g., 48kHz) 

• e.g., HiFiSinger, a NAR singing model for high-fidelity 48kHz voice
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Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Image Generation

• Traditional image generation is inherently non-autoregressive based on generative 
models, like GAN, VAE, Flow and Diffusion model
• GAN suffers from training instability and mode collapse

• VAE suffers from blurriness

• Flow and diffusion model require multiple iterative steps

• Importantly, high-resolution image generation is costly for these methods 
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Image Generation

• A recent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)
• Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with 

encoder

• Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens 
autoregressively

• Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete 
tokens 
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Image Generation

• A recent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)
• Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with 

encoder

• Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens 
autoregressively

• Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete 
tokens 
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Image Generation

• Advantages and disadvantages
• Advantages: first learn composition then render the details, very reasonable

• Disadvantages

• AR generation for discrete tokens, should have no order bias like in language

• Slow in long sequence
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Use NAR for discrete token generation! 



Image Generation

• Input: any conditional information, e.g., class tag

• Output: discrete tokens of image 

• Target dependency comparison with NLP/Speech tasks
• Language has more target dependency, since contextual symbol

• Speech has correspondence with source text, target dependency is weak

• Image tokens seem to be similar to language, but more similar to speech 
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NAR image token generation weaker target dependency than NLP, 
maybe stronger than text to speech



Image Generation——MaskGIT

• Use BERT-like mask-predict mechanism to iterative predict discrete tokens
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Image Generation——VQ-Diffusion

• Use diffusion model with a mask-and-replace diffusion strategy to model the 
discrete tokens in parallel 
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Modality Task Source Target Target-Source vs 
Target-Target 

Difficulty of NAR

Text 
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech 
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image 
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference
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Outline

• Overview of NAR generation tasks in NLP/Speech/CV
• Target-target vs target-source dependency

• Key tasks
• Neural machine translation
• Text error correction
• Speech to text recognition
• Text to speech/Singing voice synthesis
• Image  generation

• Summary of NAR applications
• Benefits of NAR for different tasks
• Addressing target-target dependency (model multimodal distributions)
• Addressing target-source dependency (learn source-target alignment)
• Data difficulty vs model capacity
• Streaming vs NAR, AR vs Iterative NAR
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Benefits of NAR: Inference speedup

• Ideal speedup for one pass generation
• Text sequence: 10~100

• Speech sequence: spectrogram/500, waveform/80K

• Image sequence: token/256, pixel/65536

• Iterative based method
• N/iter, speedup achieved when iter < N

• For example, in TTS, for a speech/spectrogram sequence with 500 frames, a diffusion model with 
1000 steps (e.g., Grad-TTS), then 500/1000 no speedup!

• Inference speedup does not necessarily mean low computation/memory
• Computation/memory should be similar as AR model

• NAR leverages parallel computation (e.g., GPU) for speedup
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Benefits of NAR: Beyond inference speedup

• Avoid error propagation
• AR has exposure bias and error propagation, later tokens will be affected by the accumulated errors in previous 

tokens
• NAR has no such exposure bias and propagation

• Avoid order bias
• Image has no left-to-right or right-to-left inductive bias

• Avoid label bias

• Avoid attention collapse
• AR usually leverages encoder-decoder attention to extract source information 
• However, enc-dec attention is originally designed for text, may not be suitable for other modalities, such as in text-

to-speech, attention collapse and word skipping/repeating/error 

• Improve controllability
• AR generates token one-by-one, cannot well control the length or other factors
• NAR can well control length, and generative models like VAE/Flow/GAN/Diffusion support latent manipulation!
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AR is not the only way for generative modeling
Embrace Flow/VAE/Diffusion/GAN and other generative models in various tasks!



Handle multimodal p(x|y)

• Addressing target-source dependency to simplify mutimodal in p(x|y)
• Learn better target-source alignment

• Addressing target-target dependency to better model multimodal 
• With advanced generative models (Flow/VAE/Diffusion/GAN, etc)
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Handle multimodal p(x|y)

• Learn source-target alignment or provide more information to reduce multimodality in 
p(x|y) 
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Alignment Method Task

Attention

Machine translation
Alignment is vague, not 
monotonic, and implicit  

Text summarization

Text style transfer

Dialogue generation

CTC
Text error correction

Alignment is monotonic 
and flexible

Speech recognition

Machine translation

Duration
Text to speech/Singing voice synthesis Alignment is monotonic 

and deterministic Text error correction

No Voice conversion/Speech enhancement Already aligned well

N/A Image pixel/token generation No fine-grained condition



Handle multimodal p(x|y)

• Learn source-target alignment or provide more information to reduce multimodality in 
p(x|y) 
• Alignment methods: attention, CTC, duration

• Providing more information
• e.g., the detailed class tag of an image, a specific class of dog, instead of simply a dog

• e.g. language ID, speaker ID, more variance information (pitch, prosody) in speech 

• e.g., more context information in text, such as long sequence processing or document translation
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Handle multimodal p(x|y)

• Addressing target-target dependency with advanced generative models
• Flow/VAE/Diffusion/GAN can be well adopted in image/speech generation

• More works are trying to apply these generative model in text generation 
• Iterative refinement (e.g., masked predict) is similar to diffusion model  (VQ-Diffusion)

• CV/Speech inspire NLP

• There is a trend to discretize high-resolution continuous data (e.g., image, waveform) into low-
resolution discrete tokens (VQ-VAE or Wav2vec)
• NLP inspire CV/Speech
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Data difficulty vs model capacity  

• Tradeoff between the data difficulty (the degree of multimodality in p(x|y)) and the 
model capacity (representation power or model size)
• Sometimes increase the model capacity can handle the multimodality to some extent

• Extremely case: one model to learn them all! 

• But in some cases, data difficulty cannot be well addressed by simply increasing model capacity
• e.g, NAR in NMT, need a teacher model to distill the data to reduce the data difficulty 
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Streaming vs NAR,   AR vs iterative NAR

• Streaming vs NAR: Streaming is a scenario that a model processes in real-time when 
an input is coming, but not wait for the whole sequence
• Streaming ASR, NMT in online scenario

• In this case, two aspects:

• The advantage of NAR is reduced, since we can process an input chunk very 
fast even using AR generation

• The difficulty of NAR is reduced, since we can generate the current chunk in 
parallel, conditioned on the output of previous chunk

• AR vs iterative NAR
• AR can be regarded as an extremely case of NAR

• So all is about tradeoff between accuracy and efficiency
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Outline

• Part I: Introduction (Jiatao Gu)

• Part II: Methods (Jiatao Gu)

• Part III: Applications (Xu Tan)

• Part IV: Open Problems (Xu Tan)
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Open problems and future directions

• How to address the multi-modal problem in NAR more effectively and efficiently
• Improve the accuracy while maintain the advantage of inference speedup

• Instead of sacrificing the inference speedup with multiple iterations to trade off for accuracy  

• Learn better target-source alignment to provide more target-source dependency to reduce target-
target dependency 

• Better model target-target dependency with advanced methods 
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Open problems and future directions

• Unify all the modality (text, speech, image) in one NAR model?
• Bridge the modality gap among CV/NLP/Speech

• Currently we already see some trend, quantize image/speech into discrete tokens, maybe can unify 
in a single discrete token generation?

• For iterative generation, what connection/relationship can we build between diffusion 
model (continuous diffusion or VQ-Diffusion), flow model, and iterative refinement 
methods like Mask-Predict in NLP? What insight we can get to further inspire new 
methods?

• What is the challenges and opportunities in other sequence generation tasks beyonf
NLP/Speech/CV?  
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https://github.com/NAR-tutorial/acl2022

https://github.com/NAR-tutorial/acl2022


Hiring at Microsoft Research Asia!

• Research FTE (social/campus hire)
• Generative Models and Data Generation

• Machine Learning, Deep Learning

• NLP (NMT, Summarization, Conversation, Pre-training, etc)

• Speech (TTS/ASR)

• Research Intern
• Speech, Music, NLP, ML 
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Machine Learning Group, Microsoft Research Asia
Xu Tan xuta@microsoft.com

https://www.microsoft.com/en-us/research/people/xuta/

mailto:xuta@microsoft.com
https://www.microsoft.com/en-us/research/people/xuta/


Thank You!
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