
Non-autoregressive Sequence Generation

Jiatao Gu, Meta AI

Xu Tan, Microsoft Research Asia

https://github.com/NAR-tutorial/acl2022
1

Speaker information

• Jiatao Gu (顾佳涛)

• Research Scientist @ FAIR Labs, Meta AI

• Research interests:
• Generative Models, NLP, 3D and multimodal learning, Deep Learning

• Some links
• Homepage: https://jiataogu.me/

• Google Scholar: https://scholar.google.com/citations?user=cB1mFBsAAAAJ

2

http://jiataogu.me/
https://scholar.google.com/citations?user=cB1mFBsAAAAJ

Speaker information

• Xu Tan (谭旭)

• Senior Researcher @ Microsoft Research Asia

• Research interests: deep learning, NLP/Speech/Music, data generation
• NMT, text generation, language pre-training

• TTS, ASR, AI Music

• Some links
• Homepage: https://www.microsoft.com/en-us/research/people/xuta/

• Google Scholar: https://scholar.google.com/citations?user=tob-U1oAAAAJ

3

https://www.microsoft.com/en-us/research/people/xuta/
https://scholar.google.com/citations?user=tob-U1oAAAAJ

Outline

• Part I: Introduction (Jiatao Gu)

• Part II: Methods (Jiatao Gu)

• Part III: Applications (Xu Tan)

• Part IV: Open Problems (Xu Tan)

https://github.com/NAR-tutorial/acl2022

4

https://github.com/NAR-tutorial/acl2022

Non-Autoregressive Sequence Generation

(Part I: Introduction)

5

Neural Sequence Generation

• Many real-world applications can be seen as sequence generation!
• We can transform any structured data into sequence

• For instance, speech as wave sequence; images can be flattened into pixel sequences, etc.

6

Autoregressive (AR) Sequence Generation

• Generate sequence token by token in an autoregressive way

• Factorize the joint probability in a chain rule

• Has been poplar in many sequence generation tasks (NLP, speech, CV)
• Can be implemented with RNN/CNN/Transformer

• Can be unconditional (a single decoder) or conditional (encoder-decoder)

Decoder

7

Popular models in AR: Transformer & LLM

• Transformer (2017)
• Unleash the modeling power by removing the inductive

bias in RNN and CNN

through QKV attention

• Has become the model backbone for NLP, Speech and CV

• GPT-1/2/3
• Large-scale pre-training models using autoregressive

Transformer

8

Transformer & LLM

• Zero-shot / One-shot in-context learning with LLM

• Multi-modal generation (DALLE-1)

9

10

Why do we care?

• Text generation models are mostly autoregressive

• Each step needs a forward pass of deep Transformer layers.

Then, why do we want to explore other alternatives

(a possible illustration)

11

AR model is slow

• Inference time linearly grows with sequence length

• Time consuming in real-time scenarios, especially for long text/speech/image sequence
• Text: 10~100

• Speech: 500 for spectrogram or 80K for waveform for a 1s speech

• Image: 65536 (256*256) for pixel and 256 (16*16) for tokens

12

Harmful biases in AR generation

• Exposure bias

• Exposure bias: ground-truth tokens are taken as input in training (teacher-forcing), but predicted

tokens are taken as input in inference (free-run)

• Error propagation: later tokens will be affected by the accumulated errors in previous tokens

• Label bias

• The normalization constraint over vocabulary items at each decoding step in autoregressive

models poses a harmful inductive bias which leads to learning miscalibrated distributions over

tokens and sequences

• Order bias
• Left-to-right generation may not be the best order for generation, or some data prefers no order

13

Non-autoregressive Text Generation

• Can we synthesize text in parallel like typical image synthesis?

• We propose the first non-autoregressive translation (NAT) model, which

builds on top of Transformer.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive
neural machine translation. ICLR 2018

14

Evaluation protocol

How can we compare the performance between AR and

NAR systems?

• Standard benchmark:

• Machine Translation, WMT14 En→ De

• Quality measure

• BLEU score

• Efficiency measure

• Latency (GPU batch=1,

batch=full and CPU batch=1)

• Quality-efficiency trade-off figure

15

Why is NAR difficult?

• The original NAR system is far from the AR baselines.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive
neural machine translation. ICLR 2018

Models BLEU

Autoregressive Baselines 27.48

NAT 17.69

NAT with reranking 19.17

16

Why is NAR difficult?

Typical errors made by a NAR system:

• Repetitive tokens (over generation)

• Shorter or broken sentences (under generation)

• Influent sentence (no/weak language model)

Fundamental issue:

• The independence assumption in the output space

ignores the real dependency between target tokens.

• Maximum-likelihood training force to cover all

possible modes

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

Real target
data is “multi-

modal”

17

Why is NAR difficult?

How AR system solve this problem?

• P(Vielen) * P(Dank|Vielen) * P(<eos>|Vielen Dank)

• P(Danke) * P(schon|Danke) * P(<eos>|Danke schon)

AR model explicitly models the dependency in the

target space. Generation is to make choice at each

step and affect the next choice.

• P(Vielen) * P(Dank)

• P(Danke) * P(schon)

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

18

How can we improve NAR models to match
AR systems?

Xiao, Y., Wu, L., Guo, J., Li, J., Zhang, M., Qin, T. and Liu, T.Y., 2022. A Survey on Non-Autoregressive
Generation for Neural Machine Translation and Beyond. arXiv preprint arXiv:2204.09269.

How can we further improve NAT?

• Data → reduce the complexity
• Model → increase the capacity
• Loss → resolve uncertainty
• Learning → ease the training difficulty

Non-Autoregressive Sequence Generation

(Part II: Methods)

19

A principled goal

• The main challenge of NAR generation is “failure of capturing the target side
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Additional techniques that improve the final performance

20

Model Architecture

NAR
Sequence

Generation

Fully NAR
Models

Partially NAR
models

Locally AR
models

Iteration-
based NAR

models

NAR
models

with Latent
variables

How to incorporate
latent variables?

How to generate
the output?

Length
predictors

Intermedia
predictors

VAEs

Semi-Autoregressive

21

Fully NAR Models

• The simplest way of generating tokens in parallel.
• Time complexity: O(1)

• Pros:
• Simple to implement

• Fastest decoding

• Easy to incorporate other improvements.

• Difficulties:
• Relatively worst performance

• CANNOT handle target token dependencies without
other improvements

• Hard to work well on LONG sequences.

Decoder

Encoder

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

𝑦1 𝑦2 …𝑦𝑇

[mask][mask]…[mask]

22

Example 1: vanilla NAT model

• Following the initial work, we can
simply implement such vanilla NAR by
removing causal masking in the
Transformer decoder.

• Inputs to the decoder:
• Special mask tokens

• Soft-copy of encoder’s hidden states or
embeddings

• Naïve implementation is very bad:
• ~10 BLEU on raw dataset.

Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive
neural machine translation. ICLR 2018

23

24

• As a special case, fully NAR systems can be significantly improved by adding a

small AR layer in the output. It will help to model the “missing” target side

dependency without sacrificing too much on latency.

• It is technically autoregressive, while most of the computation is done in the NAR

part. In this sense, it is very different from typical Transformer-based models.

• Tiny AR layer can be:

• N-gram LM

• CRF

• Tiny RNN (e.g. ,1-layer GRU or SRU)

Fully NAR model + tiny AR layer

25

• By adding the conditional random fields (CRF)

on top of the original NAR model’s output, it

considers the dependency of the neighbors:

• Apply low-rank/beam approximation to make

the transition feasible for large vocabulary.

• Decoding is sequential but much faster than

typical AR models.

Example 2: NAR + CRF layer

Z. Sun, Z. Li, H. Wang, D. He, Z. Lin, and Z. Deng, “Fast structured decoding for
sequence models,” NeurIPS, vol. 32, pp. 3016–3026, 2019.

Partially NAR models

• AR at sequence level, output multiple tokens in parallel
• In the middle between AR and fully NAR models

• Time complexity: O(N/K) (K is the segment length)

• Pros:
• Produce better performance

• If tuning properly, it can achieve the same performance as AR

• Difficulties:
• Globally still AR, it did not change the linear complexity

• Speed-up is small

Decoder

Encoder

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

𝑦1 𝑦2 𝑦3𝑦4 …

<s><s> 𝑦1𝑦2 …

26

Example 3: n-gram decoding

• Decode multiple tokens in parallel (usually n-gram),
and then the overall sentence is still autoregressive.

• Relaxed causal mask: a block-wise attention which
can make max use of the decoded contexts.

C. Wang, J. Zhang, and H. Chen, “Semi-autoregressive neural
machine translation,” in EMNLP, 2018, pp. 479–488 27

Example 4: Block-wise decoding

• A dynamic approach compared to
“fixed” n-gram prediction…

• The model has three stages:
• Prediction: each step the NAR model

predict an n-gram block.

• Verification: compare the prediction of
NAR model, and the AR teacher’s
prediction in a teacher forcing matter.

• Accept the sequence with longest match
and move to predict next block.

Stern, M., Shazeer, N. and Uszkoreit, J., 2018. Blockwise parallel decoding for deep
autoregressive models. Advances in Neural Information Processing Systems, 31.

Due to the use of AR
teacher for verification, the

model’s performance is
guaranteed not worse than
AR models, while achieving

3x-4x speed-up!

28

Locally AR models

• NAR at sequence level, output each segment in AR
• In the middle between AR and fully NAR models

• Time complexity: ~O(K) (K is the segment length)

• Also have similarities to NAR + tiny AR layer.

• Pros:
• Produce better performance

• Motivated by the fact the NAR models deal with local
dependencies badly, e.g., repetitive words.

• Faster generation compared to previous type

• Difficulties:
• Need complex algorithm to merge the output or resolve

conflicts between each position.

Decoder

Encoder

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

[mask] [mask]

29

Example 5: Neural Phrase-based Translation

• Pre-transformer era work, still based on RNNs.

• Similar to traditional statical machine
translation, model is learned to translate
phrase independently with local RNNs.

• Merging phrases need to run dynamic
programming (DP) which limits its application
to high-resource domains.

Huang, P.S., Wang, C., Huang, S., Zhou, D. and Deng, L., 2018, February. Towards Neural Phrase-
based Machine Translation. In International Conference on Learning Representations. 30

Example 6: Local autoregressive translation (LAT)

• Similar to NPMT, this paper also learned to
predict local sequence with a small RNN
locally.

• No DP needed, but a heuristic merging
operation based on longest common string
between two positions.

• Different from NAR + tiny RNN, it is still
constant time. Because of the local AR, it
can mostly remove artifacts like repetition.

X. Kong, Z. Zhang, and E. Hovy, “Incorporating a local translation mechanism into non-autoregressive
translation,” in EMNLP, 2020, pp. 1067–1073

31

Iteration-based Models

• Generate/refine the sequence iteratively. For each
iteration, the sequence output in based on NAR.

• Time complexity: O(K) or O(logN) (depending on the
methods to use)

• Pros:
• General and simple to implement. The straightforward

extension of fully NAR models.

• Best performance so far for NAR models.

• Difficulties:
• Trade-off between quality and latency.

• The speed-up advantage challenged by “Deep encoder,
shallow decoder”.

Decoder

Encoder

𝑦1 𝑦2 𝑦3 …𝑦𝑇

𝑦′1 𝑦′2 𝑦′3 …𝑦′𝑇

𝑥1 𝑥2 𝑥3 …𝑥𝑇𝑆

Due to time limits, we only
introduce some classical

models in this categories.
We refer the readers to the

reading list for more and
recent approaches!

Kasai, J., Pappas, N., Peng, H., Cross, J. and Smith, N.A., 2020. Deep encoder, shallow decoder:
Reevaluating non-autoregressive machine translation. arXiv preprint arXiv:2006.10369.32

Example 7: Mask-Predict

• Following similar training tasks of BERT
(masked language model), we can directly
use the mask prediction model for iterative
generation.

• BERT training 15%, while CMLM is trained
by randomly masking 0~100% tokens.

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of conditional masked
language models,” in EMNLP-IJCNLP, 2019, pp. 6112–6121.

33

• The BERT-style training did not tell
us how should we inference in the
testing time.
• As it is just forcing the model to

predict the masked tokens from the
remaining.

• Skeptical decoding -- an annealing-
based method was used for
iterative translation
• Set the target iteration T.

• Start with all masks;

• For each iteration t, make the
prediction, and then mask (1-t/T) * N
tokens with lowest scores.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of conditional masked
language models,” in EMNLP-IJCNLP, 2019, pp. 6112–6121.

Only keep the most confident
tokens in early iterations, and
gradually expand the number

of words kept.

CMLM has a strong connection
to diffusion-based models!

34

Example 8: Insertion Transformer

M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, “Insertion transformer: Flexible sequence
generation via insertion operations,” in ICML. PMLR, 2019, pp. 5976–5985

• There is not only one way to perform
iterative generation. Sentence can also be
composed by insertion!

• Mask-Predict is constrained to know
(predict) the length before generation, while
with insertion, it is possible to generate
sequences in any lengths during iteration.

• Generation terminates if all positions are
not insertable. The complexity is logarithm.

36

Example 9: Levenshtein Transformer (LevT)

• With one step further, LevT
combines insertion & deletion,
which means the model can
freely edit over the generation,
change the length and
terminate the iteration in a
dynamic way.

• For each iteration, it contains
three forward passes:
• Parallel deletion

• Parallel insertion (predict # of
masks, mask prediction) J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32,

pp. 11 181–11 191, 2019
37

38

• LevT is trained through imitation learning,

with a dual policy (simplifie version):

• Learning to insert tokens by predicting

random deletion;

• Learning to delete tokens by fixing errors

made by insertion;

• The expert action are automatically

generated based on Levenshtein distance

with ground-truth.

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, pp. 11
181–11 191, 2019

39

• An example of iterative refinement using LevT:

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, pp. 11
181–11 191, 2019

40

• Speed-up of LevT compared to CMLM (constant time) and

Insertion Transformer (logarithm time)

J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” NeurIPS, vol. 32, pp. 11
181–11 191, 2019

Model Architecture

NAR
Sequence

Generation

Fully NAR
Models

Partially NAR
models

Locally AR
models

Iteration-
based NAR

models

NAR
models

with Latent
variables

How to incorporate
latent variables?

How to generate
the output?

Length
predictors

Intermedia
predictors

VAEs

41

42

Latent Variable Models for NAR generation

The concept of “latent variables” are very important for NAR!

• The additional variables are used to capture uncertainty / dependency.

• Iteration-based models can also be seen as “latent-variable models”

• All the intermedia decoding results can be seen as latent.

• Y0 (all masks) → Y1 → Y2 → … → YT (target sequence)

Why latent variables will be useful in NAR generation?

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

Z=1

Z=2

Z=3

Latent variables

Suppose we only have
three translation for this

sentence, and we
determine one mode first,

then the output can be
generated in NAR!

43

Latent Variable Models for NAR generation

• Normally, we need to marginalize the latent variables, or maximize the

evidence lower bound (ELBO):

𝐿𝐸𝐿𝐵𝑂 = 𝔼𝑞 𝑍 𝑋 log𝑃 𝑋 𝑍 + log 𝑃(𝑍) + 𝐻(𝑞)

• In practice, we can either choose to work on pre-defined “latent variables”

with some off-the-shelf predictor or learn everything jointly (e.g., VAEs).

44

Length predictor

Most NAR systems at least have one “latent variable” – length

• AR model usually uses the special symbol <eos> to show the end of

generation, and the length is determined when the generation ends.

• However, for most NAR models (except for CTC-based models) need to

pre-determine the “length” before NAR generation can starts. In this

sense, length itself can also be used to capture some dependency

information!

Thank you

Vielen Dank

Danke schön

Danke

Danke Dank

Vielen schön

L=2

L=2

L=1

45

Length predictor

Types of length predictor:

• Training a separate classifier to predict the correct length

• Using the encoder’s hidden states and pooling

• Using specific [LENGTH] token in the encoder

• Statistics

• In some work, it is also possible to directly use the dataset statistics

• Mostly, B is the size of length beam, and it relies on the re-ranking.

46

Intermedia predictors

It is a vague categories, which refers to modeling latent variables:

• With clear definitions / meanings

• Predictable given the target or source-target pairs

• Off-the-shelf predictors are available (and typically fixed) to predict these

information

• Not optimal, and the performance affected by the predictor.

Length can be seen as a special “latent variable” as we don’t need to separate

inference network to infer that.

47

Example 10: Fertility predictor

• Fertility: how many words each

source token will be translated

to, which is estimated by

alignment tools.

• Fertility can also be predicted

in a NAR way.

• Bonus point: we don’t need

additional length predictor as

we can add fertilities together.
Gu, J., Bradbury, J., Xiong, C., Li, V.O. and Socher, R., 2017. Non-autoregressive
neural machine translation. ICLR 2018

48

Example 11: ReorderNAT

• Fertility can only partially help the

translation, while it is not possible

to handle reordering in MT.

• ReorderNAT used an additional

module to predict reordering

(which can be either NAR or light-

weight AR model).

• Ordering can also be obtained from

alignment tools.

Q. Ran, Y. Lin, P. Li, and J. Zhou, “Guiding non-autoregressive neural machine translation decoding with reordering
information,” in AAAI, vol. 35, no. 15, 2021, pp. 13 727–13 735

49

Example 12: SynST

• Similar to ReorderNAT, we can also plug-in

other type of predictors in the middle of

encoder and decoder.

• SynST learns to autoregressively predict

“high-level” chunks using a light-weight

AR model, and then generate texts based

on these chunks.

• Chunk information can be obtained from

a syntactic parser.

N. Akoury, K. Krishna, and M. Iyyer, “Syntactically supervised transformers for
faster neural machine translation,” in ACL, 2019, pp. 1269–1281.

50

Variational Autoencoders

Different from the previous case, such models are more general

• Latent variables have NO clear definitions / meanings

• Need to optimize both the generator and the encoder (and potentially

also the prior).

• Basically, we can either model it with Continuous VAE or Discrete VAE.

Both have pros and cons.

51

Example 13: Continuous VAEs (LaNMT)

• One way is to model the latent as

standard continuous VAE with spherical

Gaussian prior.

• Inference time:

• with mean / samples from the prior

R. Shu, J. Lee, H. Nakayama, and K. Cho, “Latent-variable non-autoregressive neural machine translation with
deterministic inference using a delta posterior,” in AAAI, vol. 34, no. 05, 2020, pp. 8846–8853.

However, the mean
vectors are usually not

the best choice.
The prior is TOO simple

to capture complex
dependences!

52

Problem of simple VAEs

• Spherical Gaussian prior is typically too

weak to capture complex dependencies.

• The mean vector of the prior is usually far

from the posterior.

• Iterative inference with delta posterior

R. Shu, J. Lee, H. Nakayama, and K. Cho, “Latent-variable non-autoregressive neural machine translation with
deterministic inference using a delta posterior,” in AAAI, vol. 34, no. 05, 2020, pp. 8846–8853.

53

Example 14: Continuous VAEs + EBM

• As a follow-up, it is also possible

to train an energy function to

estimate gradients in the

continuous space.

• The goal is to find z closer to the

posterior more efficiently!

Lee, J., Shu, R. and Cho, K., 2020. Iterative refinement in the continuous space for
non-autoregressive neural machine translation. EMNLP 2020 (pp. 1006-1015).

54

Example 15: FlowSeq

• Another direction is to actively

learn a more complex prior

• Flowseq is a model which uses

flow to map Gaussian noise to a

complex prior.

X. Ma, C. Zhou, X. Li, G. Neubig, and E. Hovy, “Flowseq: Non-autoregressive conditional
sequence generation with generative flow,” in EMNLP-IJCNLP, 2019, pp. 4282–4292.

55

Example 16: Discrete VAEs (VQ-VAE)

• Training of VQ-VAE for NAR

generation are usually two steps:

• Learning the encoder and decoder

• Learning the AR prior over the

discrete symbols.

• Although the prior part is based on

AR, it is typically shorter than the

original length.

L. Kaiser, S. Bengio, A. Roy, A. Vaswani, N. Parmar, J. Uszkoreit, and N. Shazeer, “Fast decoding
in sequence models using discrete latent variables,” in ICML. PMLR, 2018, pp. 2390–2399.

Roy, A., Vaswani, A., Neelakantan, A. and Parmar, N., 2018. Theory and
experiments on vector quantized autoencoders. arXiv preprint arXiv:1805.11063.

56

Example 17: Discrete VAEs (latent-GLAT)

• Recently, there are also papers applying NAR

generation in the discrete codes as well.

• Compared to the typical framework that relies

on AR model to generate the prior, it seems

more efficient to generate them iteratively.

Y. Bao, H. Zhou, S. Huang, D. Wang, L. Qian, X. Dai, J. Chen, and L. Li, “latent-glat:
Glancing at latent variables for parallel text generation,” ACL, 2022.

A principled goal

• The main challenge of NAR generation is “failure of capturing the target side
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

58

Objective Functions

Standard Cross-
Entropy Loss

Loss with
latent

alignments

Loss beyond
token-level

59

Cross Entropy

• Most NAR models apply the standard loss function (cross-entropy) for training

• Standard cross entropy will compare tokens one by one between model
prediction and ground-truth, which requires the length has to be correct!

60

Problems of Cross Entropy

• Over penalty for mis-alignment! (For AR model it is not an issue)

• Token-level CE does not consider the global correctness, which aggravates the
weakness in capturing target side dependency.

• Maximum likelihood training will tend to cover all possible modes, however, as
we discussed, NAR model lack the ability of capture target side dependencies.

61

Example 18: CTC & AXE

• Inspired from ASR literature, we replace can replace
objective with CTC that marginalizes all possible alignments
• It assumes output always longer than the target, which in text

generation we need to up-sample the decoder.

• The final output is decoded by collapsing repetitive tokens.

• Similarly, AXE is another loss using the monotonic alignment
to improve cross entropy
• Difference from CTC: (1) no need to up-sample; (2) using DP to find

the best alignment instead of marginalizing the alignments.

J. Libovickỳ and J. Helcl, “End-to-end non-autoregressive neural
machine translation with connectionist temporal classification,”
in EMNLP, 2018, pp. 3016–3021.

G. Marjan, V. Karpukhin, L. Zettlemoyer, and O. Levy, “Aligned cross entropy for
non-autoregressive machine translation,” in ICML. PMLR, 2020, pp. 3515–352362

Example 19: OAXE

• Both CTC and AXE can only resolve the
mismatch when for “monotonic”
alignment, while in practice re-ordering
exists in real data, especially for tasks
such as MT.

• Order-agnostic cross-entropy (OAXE)
loss applies the Hungarian algorithm to
find the best possible alignment, which
allows non-monotonic alignments in
NAR generation.

C. Du, Z. Tu, and J. Jiang, “Order-agnostic cross entropy for non-autoregressive
machine translation,” in ICML. PMLR, 2021, pp. 2849–2859.

63

Example 20: N-gram loss

• [a] N-gram level loss minimizes the
Bag-of-Ngrams (BoN) difference
between the model output and the
reference sentence.

• [b] proposed “edit invariant
sequence loss (EISL)” to replace CE,
which also focuses on n-gram
matching as convolution.

[a] C. Shao, J. Zhang, Y. Feng, F. Meng, and J. Zhou, “Minimizing the bag-of-ngrams difference for non-
autoregressive neural machine translation,” in AAAI, vol. 34, no. 01, 2020, pp. 198–205.

[b] G. Liu, Z. Yang, T. Tao, X. Liang, Z. Li, B. Zhou, S. Cui, and Z. Hu, “Don’t take it literally: An
edit-invariant sequence loss for text generation,” arXiv preprint arXiv:2106.15078, 2021.64

Example 21: ENGINE

• We can further go from n-gram level to
entire sequence level with a learned energy
function.

• In ENGINE, a pretrained AR model is used as
an energy score for evaluating the output
globally.

• Gradient is passed via straight-through /
softmax during training.

L. Tu, R. Y. Pang, S. Wiseman, and K. Gimpel, “Engine: Energybased inference networks for
non-autoregressive machine translation,” in ACL, 2020, pp. 2819–2826 65

Example 22: GANs

• Extending similar ideas from
learning with a pretrained
energy function, it is also
possible to learn jointly!

• For example, it might be useful
to train text-GAN in NAR
settings.

Huang, F., Guan, J., Ke, P., Guo, Q., Zhu, X. and Huang, M., 2020. A text GAN for
language generation with non-autoregressive generator.

66

A principled goal

• The main challenge of NAR generation is “failure of capturing the target side
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

68

69

Sequence-level Knowledge Distillation (KD)

• Knowledge distillation
• Use the soft logit probability prediction from a teacher model to teach a student model

• Knowledge distillation in sequence tasks
• Token-level knowledge distillation

• The logit probability of each token is used to teach student

• Sequence-level knowledge distillation
• The sequence generated by the teacher model is used to teach student

Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).
Kim Y, Rush A M. Sequence-level knowledge distillation[J]. arXiv preprint arXiv:1606.07947, 2016.

70

Sequence-level Knowledge Distillation (KD)

• Distillation at sequence level can significantly improve NAT systems:

• 1. train teacher autoregressive model

• 2. replace targets with teacher’s prediction

• 3. train NAT models on the synthetic pairs

• Almost all NAT systems benefit from KD:

w/o distillation w/ distillation

Vanilla NAT (Gu et al, 2017) 11.4 19.5 (+8.1)

FlowSeq (Ma et al, 2019) 18.6 21.7 (+3.1)

LevT (Gu et al, 2019) 25.2 26.9 (+1.7)

Train AT model

Decode from AT
model

Train NAT model

71

Why KD works?

• Simplify the data distribution of target data, and thus reduce target

data dependency
• Data is complicated, the teacher (AR) model only learn the most dominated

distribution from the data

• During beam search/sampling, the most probability data pattern is

generated instead of the whole data distribution

• E.g., “Thank You” → “Vielen Dank” or “Danke” , after distillation may only

have “Danke” in German, reduce the multi-modality of target data

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019

72

• Quantitive results: A cross-entropy based measure is used for dataset complexity

and prepare distilled data from different teacher models.

How KD works?

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019

73

• NAR models perform the best when the data complexity matches the model’s

capacity

How KD works?

C. Zhou, J. Gu, and G. Neubig, “Understanding knowledge distillation in non-
autoregressive machine translation,” in ICLR, 2019

74

Problems of KD

• KD makes the training pipeline too long

• You always need to first train an AR model as the teacher

• The capacity of NAT models should be correlated with the complexity of

the distilled dataset

• KD hurts the lexical choice especially on low-frequency words.

A principled goal

• The main challenge of NAR generation is “failure of capturing the target side
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

75

Learning paradigm

Advanced Learning
Paradigm

Multi-
task/Curriculum

Learning

Pre-training

76

Multi-task and Curriculum Learning

• Directly learning NAR models over a given dataset is hard, and easily gets
stuck into bad optimum.

• NAR models can effectively benefit from learning multiple (easier) tasks
jointly, with a better curriculum

• Easier tasks:
• Learning with partially masked input

• Learning with partially autoregressive generation

• Learning on smaller granularity

77

Example 23: GLAT

• In the original Mask-Predict, it is found
that when training on sequences with
different mask ratio, the performance of
single iteration model is better than those
trained directly on “full-mask” settings.

• Such results in fact indicate that, when
training NAR models, it is beneficial to
ease the difficulty by jointly training on
glanced targets.

M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Maskpredict: Parallel decoding of
conditional masked language models,” in EMNLP-IJCNLP, 2019, pp. 6112–6121.

78

79

• Compared to Mask-Predict where the glancing is completely random, it is possible

to design a curriculum: We can control the number of tokens being glanced based

on the training progress.

Example 23: GLAT

distance

generación de lenguaje eficiente

generación lenguaje eficiente de

NAR Decoder

Target:

Prediction:

[mask] [mask] [mask] [mask]

Encoder

efficient language generation

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, “Glancing transformer for non-
autoregressive neural machine translation,” in ACL-IJCNLP, 2021, pp. 1993–2003.

80

• Compared to Mask-Predict where the glancing is completely random, it is

possible to design a curriculum: We can control the number of tokens being

glanced based on the training progress.

efficient language generation

generación de lenguaje eficiente

NAR Decoder

Supervision:

[mask] [mask] lenguaje [mask]

Encoder

Example 23: GLAT

Glanced target token

L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li, “Glancing transformer for non-
autoregressive neural machine translation,” in ACL-IJCNLP, 2021, pp. 1993–2003.

81

Example 24: Task-level curriculum learning

• Task-level curriculum

learning to shift the

training strategy from AR

to SAR gradually, finally

to NAR generation.

J. Liu, Y. Ren, X. Tan, C. Zhang, T. Qin, Z. Zhao, and T.-Y. Liu, “Task-level curriculum learning
for non-autoregressive neural machine translation,” in IJCAI, 2021, pp. 3861–3867.

AR training

Partially NAR
training (n-gram)

Fully NAR training

K=1

K=2,4,8,16

K=N

82

Example 25: Multi-granularity Curriculum Learning

• Curriculum learning can also be performed

on data with different translation

granularities.

• Training data is divided into words,

phrases, and sentences. A progressive

multi-granularity training strategy is used

to train the model from easy to hard

L. Ding, L. Wang, X. Liu, D. F. Wong, D. Tao, and Z. Tu, “Progressive multi-granularity training for non-
autoregressive translation,” in Findings of ACL-IJCNLP, 2021, pp. 2797–2803.

83

Improve NAR generation with Pre-training

• Like typical AR sequence generation, NAR models can also be

benefitted by fine-tuning from a pretrained models, especially from

“Encoder-only” pretraining such as BERT.

Y. Su, D. Cai, Y. Wang, D. Vandyke, S. Baker, P. Li, and N. Collier, “Non-autoregressive text generation
with pre-trained language models,” in EACL, 2021, pp. 234–243.

P. Li, L. Li, M. Zhang, M. Wu, and Q. Liu, “Universal conditional masked language pre-training for
neural machine translation,” ACL, 2022.

A principled goal

• The main challenge of NAR generation is “failure of capturing the target side
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Techniques that improve the final performance

84

85

Length beam / Noisy Parallel Decoding

• First predict a target length L, and then construct a length

beam [L-B, L+B] with beam size 2B+1

• Use NAR model (encoder one time, decode 2B+1 times) to

generate sentences with these lengths

• For latent-variable based models, we can further sample

more by sampling multiple latent codes, and then choose

the best one with highest model scores.

86

AR model re-ranking

• After obtaining multiple candidates, we can use AR model to

give a probability score to help select a better candidates

• Usually weighted combine the probability score from both AR

and NAR for final reranking

87

• Similar to the common practice in ASR, it is also useful to combine n-gram

LM into NAR generation, while maintaining overall speed-up.

Combine with n-gram LM

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.

88

A practical system of fully NAR model for
machine translation

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.

89

• Combine the technique of KD

with proposed model, we can

finally close the performance gap

between autoregressive models.

• In the meantime, the fully NAT

model maintains over x17 speed-

up.

Final System

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.

90

Final System

Speed vs Quality Trade-off
• Iterative NAT models (LevT and CMLM) require multiple iterations to achieve reliable

performance with the sacrifice of latency

• Speed advantage of fully NAT models shrinks when parallelism is constrained

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.

91

Final System

How important all these techniques?

● The combination without KD has a clear
performance drop compared to the one with KD

● CTC-based model obtains better accuracy
through marginalizing all valid alignments

● The model with GLAT is more superior to the one
with the RND training method, however it
performs similarly with VAEs

Gu, J. and Kong, X., 2021. Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade. ACL 2021.

Summary of Part II

• The main challenge of NAR generation is “failure of capturing the target side
dependency”.

• Overall instructions:

Methods Overall instructions

Model architecture Improve the model’s capability of capturing target-side dependency

Objective function Provide learning signal that resolves uncertainty

Training data Reduce the target-side dependency in the training

Learning paradigm Better paradigm to ease the difficulty of learning

Inference techniques Additional techniques that improve the final performance

92

Outline

• Part I: Introduction (Jiatao Gu)

• Part II: Methods (Jiatao Gu)

• Part III: Applications (Xu Tan)

• Part IV: Open Problems (Xu Tan)

https://github.com/NAR-tutorial/acl2022

93

https://github.com/NAR-tutorial/acl2022

94

Outline

• Overview of NAR generation tasks in NLP/Speech/CV
• Target-target vs target-source dependency

• Key tasks
• Neural machine translation
• Text error correction
• Speech to text recognition
• Text to speech/Singing voice synthesis
• Image generation

• Summary of NAR applications
• Benefits of NAR for different tasks
• Addressing target-target dependency (model multimodal distributions)
• Addressing target-source dependency (learn source-target alignment)
• Data difficulty vs model capacity
• Streaming vs NAR, AR vs Iterative NAR

95

Target-target vs target-source dependency

• Tradeoff in dependency
• Target-target dependency: dependency among target tokens

• Target-source dependency: dependency on source tokens

• If target-target is stronger than target-source dependency →more information is needed
from target tokens instead of source tokens → NAR is more difficult

• Connection to multi-modality
• Multi-modality: P(x|y) is not single-modal, not one-one mapping

• e.g., “Thank You” → “Vielen Dank” or “Danke”

• If target-source dependency dominates, then P(x|y) is more like single-modal, a source token
will have one definite translation

• If target-target dependency dominates, then P(x|y) will be like multi-modal, a source token
will have multiple token translations

96

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

97

Target-source dependency

98

Dependency Type Task Alignment

Target has correspondence with source Speech Enhancement Alignment inherently

Voice Conversion

Text to Speech Need alignment

Singing Voice Synthesis Music score alignment

Speech Recognition CTC Alignment

Target is a minor change of source Text Error Correction Locate the minor changes

Text Style Transfer Content unchange and style change

Target is a translation of source Machine Translation Alignment through attention

Target is implicitly correlated to source Dialogue Generation Absorb the high-level abstraction

Image Generation Category information

Target-target dependency

99

Dependency Type Task Description

Text Machine Translation

Discrete tokens in languages are contextualized, explained
mutually.
Language tokens have strong mutual dependency

Text Summarization

Text Error Correction

Text Style Transfer

Dialogue Generation

Speech Recognition

Speech and Image Text to Speech For continuous signal like speech/sound/image, they
depends on the concept, like speech frames depend on a
word, image pixel depend on a class.
Maybe weaker mutual dependency

Singing Voice Synthesis

Image Generation

Outline

• Overview of NAR generation tasks in NLP/Speech/CV
• Target-target vs target-source dependency

• Key tasks
• Neural machine translation
• Text error correction
• Speech to text recognition
• Text to speech/Singing voice synthesis
• Image generation

• Summary of NAR applications
• Benefits of NAR for different tasks
• Addressing target-target dependency (model multimodal distributions)
• Addressing target-source dependency (learn source-target alignment)
• Data difficulty vs model capacity
• Streaming vs NAR, AR vs Iterative NAR

100

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

101

Text error correction

• Text errors: writing assistant, search engine, speech recognition, optical character
recognition, etc.

• Input: text sequence with errors; Output: corrected text sequence

• Naïve NAR solution usually fails

• Challenges
• Error detection and error correction, to avoid under/over-correction

• Few modifications in text error correction (e.g., 10% WER)

102

Design with inductive bias, instead of black-box end-to-end learning in NAR!

Text error correction

• How to detect errors and correct errors?

• Implicit way
• Target-source attention
• CTC (connectionist temporal classification): duplicate source tokens multiple times, and use CTC loss
𝑃 𝑦 𝑥 = σ𝑧∈𝜑(𝑦)𝑃(𝑧|𝑥)

• Explicit way
• Detect the exact error patterns of insertion/deletion/substitution
• Or use duration as an approximation: 0 for deletion, 1 for substitution or nochange, 2 or more for

insertion
• Expand the source tokens to the length of target tokens according to duration, and generate correct

tokens

103

Text error correction

• Implicit error detection and correction
• Target-source attention (NAR)

• Determine the whole length of target sequence, but no need the exact alignment

• Use QKV attention:

• Query: blank token/ position embedding according to the predicted length

• Key/Value: source hidden

• CTC (connectionist temporal classification) 𝑃 𝑦 𝑥 = σ𝑧∈𝜑(𝑦)𝑃(𝑧|𝑥)

• e.g., I have a hat → I have a cat

• Input of the CTC model: I I I have have have a a a hat hat hat (duplicate 3 times)

• Output of the CTC model: I I ∅ ∅ have ∅ a a ∅ cat ∅ ∅

• CTC path merge: I have a cat

104

Text error correction

• Explicit error detection and correction
• Exact insertion/deletion/substitution

• Detect each source token as insertion/deletion/substitution

• Still need to determine the length of insertion for parallel generation
• Or directly use duration as an approximation: 0 for deletion, 1 for substitution or nochange, 2 or

more for insertion

• However, how to get the label for insertion/deletion/substitution or duration?

105

Text error correction

• How to get the label? Through target-source alignment!
• Naïve hard match, not optimal

• Alignment with dynamic programming, based on edit distance

106

Source: B B D E F

Target: A B C D F

Source: |B|,|B|,|B|,|D|,|E|,|F|

Target: |A|,|B|,|C|,|D|,| |,|F|

2 1 1 0 1

Leng Y, Tan X, Zhu L, et al. FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition[J]. NeurIPS 2021

Text error correction

• How to use the alignment label?
• Provide duration label or provide error detection label

107

Text error correction

• In training correction model, usually data augmentation/pre-training is used
• Why? Few modifications in text error correction (e.g., 10% WER), few training signal can be

leveraged

• How to augment data?
• Manually augment: insertion/deletion/substitution

• The probability distribution of deletion, insertion and substitution is set to the error distribution

• Model based augment
• BERT model with masked language modeling

108

Text error correction

• Text error correction on speech recognition (FastCorrect, NeurIPS 2021)
• ASR model is a Conformer model from ESPnet, on Chinese AISHELL-1 dataset

109

Text error correction

• Text error correction on speech recognition (FastCorrect, NeurIPS 2021)
• Compare with deep encoder and shallow decoder (no inductive bias)

110

Text error correction

• Is implicit detection or explicit detection good enough?
• Implicit: does not provide clear signal about which tokens are incorrect

• Explicit: suffers from detection accuracy (insertion/deletion/substitution)

• A better way: a soft detection mechanism: neither too implicit nor too explicit

111

Text error correction

• Extensions of error correction on ASR/OCR or other text generation models
• N-best output

• Voting effect: tokens from multiple sentences can verify the correctness with each other

• e.g., “I have a cat”, “I have a hat”, “I have a bat”

• Source speech/image information
• Two encoders, one for speech/image, the other for error text

• Use cross-attention to serve as additional input

• Action based correction
• First predict the correction action: keep, delete, generate

• Then generate the corresponding correction

112

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

113

Automatic Speech Recognition

• Input: speech (waveform/spectrogram) sequence

• Output: text (word/BPE/character/phoneme) sequence

• Target dependency comparison with NMT
• NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next

should be B, otherwise if the first is C, the next should be D.

• ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next
should be B. If the first is C, the next should be still B.

114

Target dependency in ASR is weaker than that in NMT

Automatic Speech Recognition

• CTC (connectionist temporal classification)

𝑃 𝑦 𝑥 =

𝑧∈𝜑(𝑦)

𝑃(𝑧|𝑥)

𝜑(𝑦) is called CTC path
• e.g., 𝑧: HHE∅L∅LOO, or ∅HHEEL∅LO → 𝑦:HELLO

• CTC assumes no dependency among the target tokens, but can still works well

• But modeling target dependency can still bring improvement

115

Automatic Speech Recognition

• Refine the CTC output with bidirectional dependency
• Token-level (after CTC merge):

• Mask-CTC: CMLM decoder refine the CTC output

• Improved Mask-CTC: with length adjustment

• Insertion Transformer:

• KERMIT

• Frame-level (before CTC merge)
• Imputer:

• Align-Refine:

• Align-Denoise

• Intermediate CTC

• Self-conditioned CTC: DSLSP

116

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.

Automatic Speech Recognition

117

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.

Automatic Speech Recognition

118

Higuchi Y, Chen N, Fujita Y, et al. A Comparative Study on Non-Autoregressive Modelings for Speech-to-Text Generation[J]. arXiv 2021.

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

119

Text to Speech

• Input: text (character/phoneme) sequence

• Output: speech (waveform/spectrogram) sequence

• We will mainly focus on acoustic model: phoneme to mel-spectrogram mapping, and
vocoder: mel-spectrogram to waveform mapping

120

Text
Analysis

Acoustic
Model

VocoderText Speech
Phoneme Mel-

spectrogram

Text to Speech

• Target dependency comparison with NMT and ASR
• NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next

should be B, otherwise if the first is C, the next should be D.

• ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next
should be B. If the first is C, the next should be still B.

• Besides, NMT and ASR rely on target dependency for language modeling

• TTS

• Speech frames largely depend on the source word, waveform samples largely
depend on the condition spectrogram

• Dependency among speech frames and waveform samples? Yes, indeed, but…

121

Text to Speech

• Target dependency comparison with NMT and ASR
• Discrete tokens in languages is contextualized, explained mutually. Language tokens have strong

mutual dependency
• But for continuous signal like speech/sound/image, they depends on the concept, like speech

frames depend on a word, image pixel depend on a class
• Maybe weak mutual dependency among signal itself, that is why parallel generation model is so

popular in image or speech generation.

• Another point
• Waveform samples and image pixels are so long in sequence, inference speed is extremely slow for

autoregressive generation. Strong demand for NAR generation!

• Some specific reasons in speech/spectrogram generation:
• Usually, speech frame is obtained via STFT with window/hop size (50ms/12.5ms), two adjacent frames

have 3/4 overlapping. Autoregressive generation will lead to copy, unstable to model.

122

Text to Speech

• Target dependency comparison with NMT and ASR
• NMT: For a source word, the translation can be A-B or C-D. If the first word is A, then the next

should be B, otherwise if the first is C, the next should be D.

• ASR: For a source segment, the recognition should be A-B. If the first word is A, then the next should
be B. If the first is C, the next should be still B.

• Besides, NMT and ASR rely on target dependency for language modeling

• TTS

• Speech frames largely depend on the source word, waveform samples largely
depend on the condition spectrogram

• Dependency among speech frames and waveform samples? Yes, indeed, but…

123

Based on above analysis, TTS has much weaker target
dependency than NMT, and slightly weaker than ASR

Text to Speech: NAR for speedup

• Compared with autoregressive mel-spectrogram/waveform generation

• Sequence is very long, e.g., 1s speech, 500 mel, 24000 waveform points

• Slow inference speed

124

Text to Speech: NAR for robustness

• AR model (Tacotron 2, DeepVoice 3, Transformer TTS) not robust:
words skipping and repeating;

• Encoder-decoder attention: Attention between mel-spectrogram and phoneme:
monotonic and diagonal

125

You can call me directly at 4257037344 or my cell 4254447474 or
send me a meeting request with all the appropriate information.

And it is worth mention in
passing that,
as an example of fine
typography

Text to Speech: NAR for controllability

• AR model automatically determines the length of speech
• Lack of controllability: hard to control the voice speed/prosody in AR generation

126

was executed on a gibbet in front of his victim’s house.

after dinner | he went into hiding for a day or two

Text to Speech: NAR overview

• Overview of NAR models in TTS

• N is sequence length, T is iteration step

127

Text to Speech: FastSpeech

• Design of FastSpeech

• Generate mel-spectrogram in parallel

(for speedup, 270x)

• Remove the text-speech attention mechanism

(for robustness, no word skipping/repeating)

• Feed-forward transformer with length regulator

(for controllability, speed control)

128

https://speechresearch.github.io/fastspeech/

https://speechresearch.github.io/fastspeech/

Text to Speech: FastSpeech 2

• FastSpeech 2

• Improve FastSpeech (one-to-many mapping)

• Use variance adaptor to predict duration,

pitch, energy, etc

• Simplify training pipeline of FastSpeech (KD)

• FastSpeech 2s: a fully end-to-end parallel

text to wave model

129

https://speechresearch.github.io/fastspeech2/p(x|y) multimodal distribution

https://speechresearch.github.io/fastspeech2/

Text to Speech: Multi-modal

• How to model multi-modal distribution p(x|y)
• Simplify the multimodal distribution p(x|y)

• Simplify target: Data distillation: lossy, Data transformation: Short Time Fourier Transformation
(STFT), DCT, Wavelet

• More input information: Pitch, duration, energy, speaker ID, prosody tag, etc..

• Better alignment: duration/alignment modeling

• Advanced modeling for multimodal distribution
• L1: Laplace distribution, L2: Gaussian distribution

• Mixture of Gaussian/Laplace/Logistic: multimodal distribution

• High-order statistics loss: high-order moment, SSIM

• Model-based loss (any distribution): classifier, discriminator in GAN

• Advanced generative models (AR/Flow/VAE/Diffusion/GAN, etc)

130

Text to Speech: Better alignment

• Duration modeling
• Statistic parametric speech synthesis→ AR model → NAR

• Duration → attention, no duration → duration prediction (technique renaissance!)

131

FastSpeech Glow-TTS
EATS Parallel Tacotron 2

Text to Speech: Advanced generative models

• Flow/VAE/Diffusion/GAN
• A comparison among different generative models for TTS

• Simplicity in math formulation and optimization

• Support parallel generation

• Support latent manipulation

• Support likelihood estimation

132

GAN is weak in latent manipulation, since the condition in TTS is so strong, P(y|x) is not that much
multi-modal compared to image synthesis, and some GAN based model do not add random noise

Text to Speech: Flow

133

• Map between data distribution p(x) and standard (normalizing) prior
distribution p(z)

• Category of normalizing flow
• AR (autoregressive): AF (autoregressive flow) and IAF (inverse autoregressive flow)

• Bipartite: RealNVP and Glow

Text to Speech: Flow (vocoder)

• Parallel WaveNet (AR)

• Knowledge distillation: Student (IAF), Teacher (AF)

• Combine the best of both worlds

• Parallel inference of IAF student

• Parallel training of AF teacher

• Other works
• ClariNet

134

Text to Speech: Flow (vocoder)

• WaveGlow (Bipartite)

• Flow based transformation

• Affine Coupling Layer

• Other works

• FloWaveNet

• WaveFlow

135

Text to Speech: Flow (acoustic model)

• Glow-TTS

• Log likelihood

• Prior is learnt from phoneme text

• Alignment A is obtained by monotonic alignment search

• Other works

• FlowTTS, Flowtron

• EfficientTTS

136

Text to Speech: GAN

137

• Adversarial loss

• Category of GAN based vocoders

Text to Speech: GAN (vocoder)

• HiFiGAN
• Multi-Scale Discriminator (MSD)

• Multi-Period Discriminator (MPD)

138

Text to Speech: Diffusion

• Diffusion probabilistic model

• Forward (diffusion) process:

• Reverse (denoising) process

139

Text to Speech: Diffusion

• Loss derived from ELBO:

• Training and inference process

140

Text to Speech: Diffusion

• Diffusion model for vocoder: DiffWave, WaveGrad

• Diffusion model for acoustic model: Diff-TTS, Grad-TTS

• Improving diffusion model for TTS
• PriorGrad, SpecGrad, DiffGAN-TTS, WaveGrad 2, etc

• With sufficient diffusion steps, the quality is good enough, but latency is high

• How to reduce inference cost while maintaining the quality is challenging, and
has a long way to go

141

Text to Speech: NAR with human-level quality

• NaturalSpeech: achieving human-level quality on LJSpeech dataset (CMOS)

• Leverage VAE to compress high-dimensional waveform x into frame-level
representations z~q(z|x), and is used to reconstruct waveform x~p(x|z)

• To enable text to waveform synthesis, z is predicted from y, z~p(z|y)

• However, the posterior z~q(z|x) is more complicated than the prior z~p(z|y).

142

Tan X, Chen J, Liu H, et al. NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality[J]. arXiv 2022

Text to Speech: NAR with human-level quality

• Solutions in NaturalSpeech
• Phoneme encoder with large-scale phoneme pre-training

• Differentiable durator

• Bidirectional prior/posterior

• Memory based VAE

143

Text to Speech: NAR with human-level quality

• Evaluations of NaturalSpeech
• MOS and CMOS on par with recordings, p-value >> 0.05

144

Achieving human-level quality on LJSpeech dataset for the first time!

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

145

Singing voice synthesis

• Input: lyric/score (phoneme/pitch/duration); output: singing voice

• Target-source dependency is even stronger than target-target dependency when
compared with text to speech synthesis
• Duration and pitch in score can decide the duration/pitch in singing voice in a large extent
• NAR is preferred

• Generative models are similar to that used in speech synthesis

• Only slight difference in alignment modeling
• Given a rough duration and pitch in music score, predict more accurate duration and pitch in the

singing voice
• Since human cannot always sing according to music score, both in duration and pitch

146

Singing voice synthesis

• But singing has its distinctive characteristics other than speaking voice
• Pitch/duration range is wider than speaking

• Data space is larger (#phoneme * #pitch * #duration) than speech

• Many singing techniques: trill, glide, opera singing, etc

• High expressiveness with high fidelity (e.g., 48kHz)

• e.g., HiFiSinger, a NAR singing model for high-fidelity 48kHz voice

147

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

148

Image Generation

• Traditional image generation is inherently non-autoregressive based on generative
models, like GAN, VAE, Flow and Diffusion model
• GAN suffers from training instability and mode collapse

• VAE suffers from blurriness

• Flow and diffusion model require multiple iterative steps

• Importantly, high-resolution image generation is costly for these methods

149

Image Generation

• A recent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)
• Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with

encoder

• Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens
autoregressively

• Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete
tokens

150

Image Generation

• A recent trend on image generation (VQ-VAE/VQ-GAN/DALL-E)
• Step 1: use VQ-VAE 1/2 or VQ-GAN to quantize the high-resolution image into discrete tokens with

encoder

• Step 2: use autoregressive model such as Transformer/GPT to generate these discrete tokens
autoregressively

• Step 3: Use decoder in VQ-VAE/VQ-GAN to generate high-resolution image from these discrete
tokens

151

Image Generation

• Advantages and disadvantages
• Advantages: first learn composition then render the details, very reasonable

• Disadvantages

• AR generation for discrete tokens, should have no order bias like in language

• Slow in long sequence

152

Use NAR for discrete token generation!

Image Generation

• Input: any conditional information, e.g., class tag

• Output: discrete tokens of image

• Target dependency comparison with NLP/Speech tasks
• Language has more target dependency, since contextual symbol

• Speech has correspondence with source text, target dependency is weak

• Image tokens seem to be similar to language, but more similar to speech

153

NAR image token generation weaker target dependency than NLP,
maybe stronger than text to speech

Image Generation——MaskGIT

• Use BERT-like mask-predict mechanism to iterative predict discrete tokens

154

Image Generation——VQ-Diffusion

• Use diffusion model with a mask-and-replace diffusion strategy to model the
discrete tokens in parallel

155

Modality Task Source Target Target-Source vs
Target-Target

Difficulty of NAR

Text
Generation

Neural Machine Translation Source language Target language ≈ ? ****

Text Summarization Long text Short Summarization > ***

Text Error Correction Error Text Correct Text > ***

Text Style Transfer Source Text Target text > ***

Dialogue Generation Dialogue Response < *****

Speech Recognition Speech Text ≥ ? ***

Speech
Generation

Text to Speech Text Speech > ***

Singing Voice Synthesis Score Singing Voice >> ***

Voice Conversion Source Voice Target Voice ≫ **

Speech Enhancement Noisy Speech Clean Speech ≫ *

Image
Generation

Pixel Generation Class ID Image Pixel - *

Discrete Token Generation Image Token - **
The values in the last two columns are just for reference

156

Outline

• Overview of NAR generation tasks in NLP/Speech/CV
• Target-target vs target-source dependency

• Key tasks
• Neural machine translation
• Text error correction
• Speech to text recognition
• Text to speech/Singing voice synthesis
• Image generation

• Summary of NAR applications
• Benefits of NAR for different tasks
• Addressing target-target dependency (model multimodal distributions)
• Addressing target-source dependency (learn source-target alignment)
• Data difficulty vs model capacity
• Streaming vs NAR, AR vs Iterative NAR

157

Benefits of NAR: Inference speedup

• Ideal speedup for one pass generation
• Text sequence: 10~100

• Speech sequence: spectrogram/500, waveform/80K

• Image sequence: token/256, pixel/65536

• Iterative based method
• N/iter, speedup achieved when iter < N

• For example, in TTS, for a speech/spectrogram sequence with 500 frames, a diffusion model with
1000 steps (e.g., Grad-TTS), then 500/1000 no speedup!

• Inference speedup does not necessarily mean low computation/memory
• Computation/memory should be similar as AR model

• NAR leverages parallel computation (e.g., GPU) for speedup

158

Benefits of NAR: Beyond inference speedup

• Avoid error propagation
• AR has exposure bias and error propagation, later tokens will be affected by the accumulated errors in previous

tokens
• NAR has no such exposure bias and propagation

• Avoid order bias
• Image has no left-to-right or right-to-left inductive bias

• Avoid label bias

• Avoid attention collapse
• AR usually leverages encoder-decoder attention to extract source information
• However, enc-dec attention is originally designed for text, may not be suitable for other modalities, such as in text-

to-speech, attention collapse and word skipping/repeating/error

• Improve controllability
• AR generates token one-by-one, cannot well control the length or other factors
• NAR can well control length, and generative models like VAE/Flow/GAN/Diffusion support latent manipulation!

159

AR is not the only way for generative modeling
Embrace Flow/VAE/Diffusion/GAN and other generative models in various tasks!

Handle multimodal p(x|y)

• Addressing target-source dependency to simplify mutimodal in p(x|y)
• Learn better target-source alignment

• Addressing target-target dependency to better model multimodal
• With advanced generative models (Flow/VAE/Diffusion/GAN, etc)

160

Handle multimodal p(x|y)

• Learn source-target alignment or provide more information to reduce multimodality in
p(x|y)

161

Alignment Method Task

Attention

Machine translation
Alignment is vague, not
monotonic, and implicit

Text summarization

Text style transfer

Dialogue generation

CTC
Text error correction

Alignment is monotonic
and flexible

Speech recognition

Machine translation

Duration
Text to speech/Singing voice synthesis Alignment is monotonic

and deterministic Text error correction

No Voice conversion/Speech enhancement Already aligned well

N/A Image pixel/token generation No fine-grained condition

Handle multimodal p(x|y)

• Learn source-target alignment or provide more information to reduce multimodality in
p(x|y)
• Alignment methods: attention, CTC, duration

• Providing more information
• e.g., the detailed class tag of an image, a specific class of dog, instead of simply a dog

• e.g. language ID, speaker ID, more variance information (pitch, prosody) in speech

• e.g., more context information in text, such as long sequence processing or document translation

162

Handle multimodal p(x|y)

• Addressing target-target dependency with advanced generative models
• Flow/VAE/Diffusion/GAN can be well adopted in image/speech generation

• More works are trying to apply these generative model in text generation
• Iterative refinement (e.g., masked predict) is similar to diffusion model (VQ-Diffusion)

• CV/Speech inspire NLP

• There is a trend to discretize high-resolution continuous data (e.g., image, waveform) into low-
resolution discrete tokens (VQ-VAE or Wav2vec)
• NLP inspire CV/Speech

163

Data difficulty vs model capacity

• Tradeoff between the data difficulty (the degree of multimodality in p(x|y)) and the
model capacity (representation power or model size)
• Sometimes increase the model capacity can handle the multimodality to some extent

• Extremely case: one model to learn them all!

• But in some cases, data difficulty cannot be well addressed by simply increasing model capacity
• e.g, NAR in NMT, need a teacher model to distill the data to reduce the data difficulty

164

Streaming vs NAR, AR vs iterative NAR

• Streaming vs NAR: Streaming is a scenario that a model processes in real-time when
an input is coming, but not wait for the whole sequence
• Streaming ASR, NMT in online scenario

• In this case, two aspects:

• The advantage of NAR is reduced, since we can process an input chunk very
fast even using AR generation

• The difficulty of NAR is reduced, since we can generate the current chunk in
parallel, conditioned on the output of previous chunk

• AR vs iterative NAR
• AR can be regarded as an extremely case of NAR

• So all is about tradeoff between accuracy and efficiency

165

Outline

• Part I: Introduction (Jiatao Gu)

• Part II: Methods (Jiatao Gu)

• Part III: Applications (Xu Tan)

• Part IV: Open Problems (Xu Tan)

166

Open problems and future directions

• How to address the multi-modal problem in NAR more effectively and efficiently
• Improve the accuracy while maintain the advantage of inference speedup

• Instead of sacrificing the inference speedup with multiple iterations to trade off for accuracy

• Learn better target-source alignment to provide more target-source dependency to reduce target-
target dependency

• Better model target-target dependency with advanced methods

167

Open problems and future directions

• Unify all the modality (text, speech, image) in one NAR model?
• Bridge the modality gap among CV/NLP/Speech

• Currently we already see some trend, quantize image/speech into discrete tokens, maybe can unify
in a single discrete token generation?

• For iterative generation, what connection/relationship can we build between diffusion
model (continuous diffusion or VQ-Diffusion), flow model, and iterative refinement
methods like Mask-Predict in NLP? What insight we can get to further inspire new
methods?

• What is the challenges and opportunities in other sequence generation tasks beyonf
NLP/Speech/CV?

168

169

https://github.com/NAR-tutorial/acl2022

https://github.com/NAR-tutorial/acl2022

Hiring at Microsoft Research Asia!

• Research FTE (social/campus hire)
• Generative Models and Data Generation

• Machine Learning, Deep Learning

• NLP (NMT, Summarization, Conversation, Pre-training, etc)

• Speech (TTS/ASR)

• Research Intern
• Speech, Music, NLP, ML

170

Machine Learning Group, Microsoft Research Asia
Xu Tan xuta@microsoft.com

https://www.microsoft.com/en-us/research/people/xuta/

mailto:xuta@microsoft.com
https://www.microsoft.com/en-us/research/people/xuta/

Thank You!

171

